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(a) The automatic reconstruction estimates an incorrect A= 0.02 (b) The ground-truth reconstruction using the known
A=0.2

(a) The automatic reconstruction estimates an incorrect A°= 0.025(b) The ground-truth reconstruction using the known
A=-0.2
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Abstract

In this paper, we study the configurations of motion
and structure that lead to inherent ambiguities in radial
distortion estimation (or 3D reconstruction with
unknown radial distortions). By analyzing the motion
field of radially distorted images, we solve for critical
surface pairs that can lead to the same motion field
under different radial distortions and possibly different
camera motions. We study the properties of the
discovered critical configurations and discuss the
practically important configurations that often occur in
real applications. We demonstrate the impact of the
radial  distortion ambiguity  on multi-view
reconstruction with synthetic experiments and real
experiments.

1. Introduction

Structure from motion (SfM) and self-calibration have
become commonplace, as recent systems demonstrate
automatic 3D  reconstructions from large-scale
uncalibrated photo collections [1, 3, 20]. These systems
show that the self-calibration of unknown radial
distortions normally works well. However, it has not
been well understood when the self-calibration of radial
distortion could fail.

This work was initially motivated by the application of
SfM in geographic survey, where Unmanned Aerial
Vehicles (UAVs) are used to capture the images. These
capture systems typically use wide-angle cameras (e.g.
GoPro) in order to cover large areas, and the images
may contain significant radial distortions. The captured
images are then processed by SfM tools, for example,
Bundler [15] and VisualSFM [21, 19], to reconstruct the
ground models. While these UAV reconstructions
usually work, we find for certain captures that the SfM
softwares produce incorrectly distorted 3D models
along with incorrect estimations of radial distortions
(See Figure 1). These failures in radial distortion
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estimation inspired this paper.

3D reconstruction is well known to have ambiguities for
certain configurations of motion and structure. These so
called critical configurations have been extensively
studied, for example, for Euclidean reconstruction with
calibrated cameras [5, 12, 9, 7] and self-calibration of
linear cameras [17, 18, 6, 10]. In real applications,
cameras often have significant radial distortions that
need to be explicitly modeled. However, we find little
previous study on the critical configurations for radial
distortion. In this paper, we will study the
configurations that can lead to ambiguous
reconstructions due to the ambiguity of radial distortion.
Our main contributions are the following:

e A motion field based framework for solving
ambiguous configurations under a general radial
distortion model;

* We solve for the critical surfaces and motions for
radial distortion self-calibration using the new
framework;

e We present an important critical configuration that
often occurs in practical applications.

Our findings can guide image capture to better avoid
ambiguous  radial  distortion  estimation, and
correspondingly show when pre-calibration of radial
distortion is necessary.

The remainder is organized as follows: Section 2
discusses the background of the critical configuration
study. Section 3 introduces our framework for analyzing
the ambiguities for radial distortion self-calibration. We
investigate the critical configurations and their
properties in Section 4 and 5, and then discuss in
Section 6 a practically important configuration that
exists under known motion directions. Conclusions and
future work are given in Section 7.

2. Background

In the past several decades, researchers have
investigated the critical configurations for many
different 3D reconstruction problems. Given any



camera motion, there may exist a family of possible
critical surfaces for which 3D reconstruction is
ambiguous (regardless of the scale). Ruled quadrics or
their degenerate forms are critical surfaces for two view
reconstruction and image velocity based reconstruction
[11, 13,5, 12]. For three views or more, critical elliptic
quartics may exist for Euclidean reconstruction and
projective reconstruction [9, 4, &, 7]. For the
self-calibration of linear cameras, there exist a set of
critical motions under which 3D reconstruction is
ambiguous regardless of the structures. A complete
study of such critical

(a)

ambiguous if all point displacements are parallel to the
camera’s translation in XY plane. These are in fact
special cases. This paper will present a full analysis of
the critical configurations for arbitrary motions.

Although modern reconstruction algorithms use discrete
point correspondences instead of motion fields, we find
the latter more convenient for analyzing radial
distortions. Unlike the complicated non-linear
relationship between the radial distortions in discrete
camera frames, the radial distortion in a continuous
motion can be conveniently modeled with derivatives,
which allows to solve for the critical configurations

A critical configuration that leads to a significantly distorted reconstruction (of the roughly flat ground). As verified by the

undistortedimages, the radial distortion is not correctly estimated. See Figure 3 where we re-produce the same problem using a synthetic

dataset.

(b)

Figure 1. Reconstruction of two GoPro UAV sequences using VisualSFM [

A typical successful reconstruction example, where radial distortions are well estimated. Notice one of the flat ground surface.

] (similar results are produced by Bundler [15]). No radial

distortion calibration is specified to the software. As shown by the blue pyramids, the camera points straight downward and moves
parallel to the ground in the first capture. In the second capture, the camera has more variations in moving directions and viewing

directions.

motions for monocular self-calibration has been
presented by Sturm [17], and further study for varying
intrinsics can be found in [18, 10]. However, no prior
work has examined the critical configurations for radial
distortion. In this paper, we will study this new critical
configuration problem.

A few special degenerate configurations for radial
distortion self-calibration have been reported previously.
For example, Micu” s”'1k et al. [14] and Brito et al. [2]
recognize forward motion as a degenerate case for
recovering radial distortion parameters. Additionally,
Micu” s”'1ik et al. [14] find pure translation to be
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without any explicit parametrization. In this paper, we
opt for the differential approach, in particular, on top of
the motion field study by Horn [5]. As deferential
motions correspond to small discrete camera motions,
our findings are valuable for the reconstruction of video
sequences, where the relative ambiguities can
accumulate to large reconstruction errors.

3. Problem formulation

The question we want to answer is the following: given
two cameras with different radial distortions and



possibly different motions, what surfaces could lead to
the same motion field? Such surfaces would be critical
for radial distortion self-calibration. Accordingly, the
family of ambiguous motion fields is given by the
possible configurations of camera pairs and their
corresponding critical surfaces.

To focus on the ambiguity caused by radial distortions
alone, we assume the two cameras to have the same
linear intrinsics. As reviewed earlier, the ambiguity of
the linear intrinsics has already been well studied. If the
analysis includes more varying parameters, such as
focal length, the ambiguity would be a larger super-set
of the radial distortion related ambiguity, the study of
which is beyond the scope of this paper.

3.1. Linear projection

First, we briefly review the motion field of linear
cameras using notations similar to [5]. Without loss of
generality, we consider the image of an identity camera.
The projection p = (x,, 1)T0€a 3D point P= (X,Y,Z)7is

P,

P=p3

where z° = (0,0,1)7 is the viewing direction. Given a
relative moving speed P9, the velocity of its observation
is
1
/
F=r. :
Suppose the camera moves with an instantaneous
translational velocity t and an instantaneous rotational
velocity w, the velocity of the 3D point relative to the
camera is

(P~ (P 2)p)

2y

Po=-t+Pxw=-t+(P*Z)p*xw.

By substituting P9, we obtain the image velocity

P = 1

7 (- 2)p =)+ [pw. 2]p —pxw,

(M

where [p,w,z"] = p*(w x Z") denotes the triple product.
3.2. General radial distortion

Now we consider the images with radial distortion.
With a typical assumption of the radial distortion being
central and centered around the principal point, each
image circle around the principal point corresponds to
another rescaled image circle in the undistorted image.
With this simple mechanism in mind, we use a
parameter-free radial distortion model based on the
scaling of the image circles. Let f{r2) be the scaling
factor for the image circle r2= x2 + y2= (pTp - 1), the
coordinate mapping from the distorted image to the
undistorted image can be written as: undistort(p) = diag
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(f(r2), f(2), 1) p.
We will refer to f(r?) as the radial distortion function.
For convenience, we define two helper matrix functions

F(r2) = diag(f. £ 1) and Fo(r2) = diag(f" f', 0),

In general, we have f0(r2) 6= 0 because f{r?) should not
be a constant. From now on, we will omit the argument
(r?) for f, O, F, and FY to simplify the equations, so the
undistorted coordinate can be simply written as Fp.

This parameter-free radial distortion model avoids the
possible limitations and complexities of explicit
parametrization. As a result, our findings will not be
limited to any specific radial distortion parametrization,
and can be applied to both typical near-linear cameras
and central omni-directional cameras.

It is worth pointing out that f{0) would correspond to
the reciprocal of focal length if we also model the
variation of focal length. Although real radial
distortions have f{0) = 1, this paper will solve the
critical configurations without explicit assumptions on
f(0). While our analysis focuses on just radial distortion,
the discovered configurations may be applied to
additional variations of focal length.

3.3. Projection under radial distortion

Given a point p in a distorted image, we can obtain the
velocity of the wundistorted image point Fp by
substituting p with Fp into Equation 1:

(Fp) = 2((1‘ Z)Fp—t)+ [Fp,w, 2] (Fp) — (Fp) x w.

In addition, we know the relationship between the
velocity p?in the distorted image and the velocity (Fp)?
in the undistorted image from differentiation:

(Fp)' = Fp'+ F'(p"p)'p= (F +2F'pp" ) v

The above two forms of (Fp)? must be equal to each
other.

3.4. Ambiguous radial distortion

Suppose a distortion-free camera with motion {t1, w1}

along with depth Z1(x,y) produces the same motion field

as does a motion {t, w2} along with depth Zz(x,y) under

a radial distortion function f, the following holds true:

(t;,_v . 73)F[J—t;_v
Zy

(F+2F.'pp7') ((fl

+ {Fprwﬂr‘ﬂ (Fp) — (Fp) X way =

E)p—t .
> l+[[).w1!z]1)fp><wl .
1

(2)

Since the Z-component of the image velocity is always
0, the vector equality gives two scalar constraints,



which are usually sufficient for solving Zi(xy) and
Z>(xy). Such a configuration of {ti,t2,w1,w2fZ1,Z2} is
called a critical configuration, where Zip and Z>Fp are
the critical surface pair for {ti,t2,w1,wz2f}. In the next
Section, we will use this constraint to solve for the
critical surfaces and derive critical motions.

The configuration with one distortion-free camera does
not lose any generality in terms of critical surfaces. We
can apply the undistortion transformation of the second
camera to produce the undistorted image, for which the
first camera can be seen as the distorted one. Similarly,
given two cameras that have different radial distortion
functions, we can apply one of the undistortion
transformations and produce the configuration of one
distortion-free camera and another camera with a
relative distortion.

4. Critical configurations

In this section, we solve for the critical surfaces and
then derive the critical motions where any surface is
critical.

4.1. Critical surfaces

For a moment we will assume t; 6= 0. By taking the
dot-product of the Equation 2 with t; x Fp, we can
eliminate Z and obtain the constraint for solving the
first critical surface Z1 as follows

0= ((Fp) xw2 — F(pxw)) - (t2 x Fp)

+ i ((tl . 7:)(;()’1'})) —th]) (F'p) - (t2 x Fp)
+ Z[tz Fty, Fpl +2(p"p) [p. w1, 2] (F'p) - (t2 x Fp)
Given Fp = (f/f)(F°p)+z", we find (FOp)*(t2xFp) =

(Fp)*(t2x 27) = fO(t2x z")Tp. By further expanding the
triple products, we can rewrite the above equation as
0= ((Fp) xws — F(pxwy)) - (t2 x Fp)
2f N . 2f N
+ Zi(tl <A pTp)(te x 2)Tp — Z—prtl (ta x 2)Tp
1

(3)

1 . .
(b Ft))"Fp+2f (p"p)p" (w1 x 2)(t2 x 2)"p,
which defines the first critical surface Z1p. Another way
to view this critical surface is a depthmap

—2f"(ty - 2)(pTp)(ta x 2)Tp+
f’pT t]_(tg X Z) (fg X Ffl)TFp
((Fp) X woy — F(p xwi)) + (ta x Fp) \
+2f (p"p) pT (wy x 2)(ta x 2)Tp

The depth from such a division is obviously valid only
when the denominator is non-zero. If both the

Z = 4
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numerator and the denominator are zero, any depth
satisfies Equation 3, so the viewing ray would lie on the
critical surface. In case only the denominator is zero,
the resulting depth would be infinite, where the image
point is a vanishing point of the critical surface.

By taking the dot-product of Equation 2 with z* x p, we
find a simple relationship between the critical surface
pair:

St G p)fzi_lwm'(éxp) -
—((Fp) xwa — F(pxw)) (2 xp)

7

which allows us to obtain Z, from Z; when t;xz" 6= 0.
The depthmap of the second critical surface can be
obtained as:

Zy = Zyta+ (2 xp)
(Ft1 — ((Fp) x wa — F(p xw1))Z1) - (2 x p)

(6)

The second critical surface is then given by Z> F p. Note
when t; x z° = 0, we can still solve for Z; by taking
dot-product with p instead, which this paper will skip.
Figure 2 demonstrates some interesting critical surfaces
and their motion fields. The critical surfaces yield the
motion fields that are ambiguous for radial distortion
selfcalibration. Despite the difference of using image
velocity here, the degenerate case found by [14] is
apparently only a special case. We will discuss more
properties of the critical configurations in Section 5.
4.2. Critical motions

There exist critical motions under which any surface is
ambiguous for recovering radial distortions. For any
critical motion, Equation 2 and 3 must hold true for any
depth Z1 and Z,, any image point p, and any radial
distortion, therefore the following two constraints must
be satisfied:

0= ((Fp) xws — F(pxwy)) - (ta x Fp)

+ 21 (p"p) p" (w1 x £)(t2 x £)Tp (7
0=2f"(ts - 2)(p"p) (t2 x 2)"p
=2f " t1(ts x 2)Tp + (t2 x Ft1)"Fp.  (8)

The two equations can be viewed as polynomial
functions of p, f, and f9, where the coefficient for each
term of different order must be zero.

Consider firstly the general case of t1 6= 0 and t; 6= 0,
Equation 8 requires t1xz" = t;xz" = 0, and Equation 7
then requires w1x z" = wzx z° = 0 and w1 = w>. That is,
translation along the optical axis and rotation around the



optical axis are critical motions for recovering radialw1
= w>. By applying these conditions in Equation 2, we

find (t2°z")Fp - t>= 0, which can be satisfied for all p
only when t; = 0. Similarly we must have t;= 0 when ¢t;
= 0. Therefore, radial distortion is not ambiguous for
pure rotations unless the rotation is around the optical
axis.
In summary, for the self-calibration of radial distortion,
we find the following critical motions:
txzZ'=wxz"=0. )
The ambiguity is not surprising since such motions are
symmetric around the optical axis. The forward motion
degeneracy reported in [14, 2] is a special case when w
= 0. On the other hand, these critical motions is a subset

pO
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of the critical motions for the linear camera
self-calibration [17]. In further analysis of critical
surfaces, we will exclude the critical motions and any
pure rotation cameras.

1. Properties of the critical configurations

This section discusses a few properties of the critical
configurations for radial distortion self-calibration.

1.1. Comparison with the distortion-free case

It can be seen from Equation 3 and 4 that the critical
surfaces for radial distortion self-calibration have high
degrees depending on the radial distortion function f. In
comparison, the critical surfaces for the distortion-free

Zp ZFp



(d) t1=(0.850138,-0.526560,0)7, t2= (0.992789,-0.119871,0)", w1 = (0.600179,0.419835,0)", w2= (0.080059,0.179102,0)7.

(f) t1=(1,0,0)7, t2 =(0,0,1)7, w1= w2=(0,1,0)". The second camera has forward motion, and the first surface is rotationally symmetric.

Figure 2. Critical surface examples created with identity cameras and a radial distortion function: f{r2) = 1 + 0.1r2+ 0.012r*. From left to
right are 1) the first depthmap, 2) the second depthmap, 3) motion field direction, 4) first critical surface, 5) second critical surface. Note
only the sub-portion of the critical surface corresponding to the [-1,1] x [-1,1] image region is visualized.

problem can be obtained by setting f = 1 and ff = 0,
which become the well-known simpler ruled quadrics:

(Px (w2—w1)) *(t2x P) + (t2x t1)TP = 0. (10)
For many camera configurations, the critical surface for
radial distortion self-calibration is in fact similar to the
corresponding ruled quadrics, and can be seen as a
distorted version of the counterpart. An example
configuration with such critical surfaces can be found in
Figure 2(d).
When the camera motion is known to be pure
translation w1 = w2 = 0 or pure rotation t1 = £, = 0,
critical surfaces do not exist in the distortion-free case.
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When radial distortion is considered, there exist the
previously discussed critical motions but no additional
critical surfaces. It is already shown that radial
distortion is not ambiguous for pure rotation except for
rotations around the optical axis. Similarly, radial
distortion is found not ambiguous for pure translation
except when it is along the optical axis.

The biggest difference regards the case of known
rotation w1 = w2 6= 0 and known translation t1= t26= 0
(ignoring scale). Under such conditions, it is known that
critical surfaces do not exist for the distortion-free
problem [5]. In contrast for radial distortion
self-calibration, critical surfaces still exist, even when



HFESHEEI The task of Digital Image Processing

both rotation and translation are known: t1 - t2 = w1 -
w2 = 0. This can be seen from Equation 4 because f0 6=
0. See Figure 2 for examples of such critical surfaces.
The new kind of critical surfaces are particularly
interesting. It shows that 3D reconstruction with
unknown radial distortion may still be ambiguous even
when translation and (or) rotation are correctly
estimated.

1.2. Additional rotation around the optical axis

For any configuration of motion and surface that
satisfies Equation 2, let us consider an additional
rotation velocity around the optical axis such that
w? = w) + 0z and

w§ = ws + 0%, The addition to the left side of Equation 2
is (Fp)x(0z") = f6(pxz"), and is equal to the addition to
the right side F(p x (627)) = f6(p x Z"). Therefore,
Equation 2 still holds for{tr, wi 2, Wi} with the same
Ziand Z».

That is, equal additions to the rotation velocities around
the optical axis does not change the critical surfaces,
despite the changes in the motion fields.

2. An interesting degenerate case

As shown by the polynomial terms of different degrees
in Equation 3, critical surfaces are complicated in
general. We are interested in possible common divisors
for those terms, so that the depth in Equation 4 can be
simplified.

2.1. A common polynomial divisor

An interesting configuration arises during our analysis.
We find Equation 3 of the first critical surface has a
second order polynomial factor as follows:

P =pTti(t2x2)p, (11)
when the following conditions are met:
t1°z"=t°2"=0,t1x =0, and t;°t; 6= 0;
(wl—wz)'zA:Oand tirrw1=t*w2=0. (12)

The camera motions can be viewed as the differential
mode of one of the following well known cases:

» Moving on a sphere while pointing to center [16].
Orbital motion with additional rotation around the
optical axis.

e Moving on a plane that is perpendicular to the
viewing direction. This can be seen as moving on an
infinite sphere (w x z" = 0) in the above case.

It can be seen that ti, tz, (w1xz"), and (w2xz") are
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parallel. Note critical surfaces will not exist for the
distortion-free problem due to the known translation t;
xty=0.

We first try to simplify the cross products that involve
Fp, that is, (Fp)xw2-F(pxw1). Using the invariance

discussed in Section 5.2, we can assume w1°zZ" = w2°Z"
= 0 from (w1 - w2)*z" = 0 without changing the critical
surfaces. By using the fact p = (p - 2") + z°, we find

(Fp) x w2~ F(p x w1)
=fp-Z)x w2+ zZ'x w2~ (p -
=(p - 2) x (fwz— w1) + 2°x (w2 - fw),

Z) x wi=f(Zx w1)
(13)

Under the proposed conditions, we can prove the terms
in the numerator and the denominator of Equation 4
divisible by @. By removing the dot-products of the
perpendicular terms that produce zeros and by
expanding the quadruple product, we can transform as
follows:

((Fp) X wy — F(px wl)) - (ta X F'p)

() (1Y)
= (0= 2) % (fwr —wn)) « (F 12 x (0 2)
=((p—2)t2) ((p—2) - (fw2— fuwr))

— —p"((f2ws — fuwn) x 2) (ta x 2)Tp,

which can be divided by @ because t1 k (w1xz") k
(w2xz"). Similarly, the term 2f0 (pTp)pT(w1 x z7)(t2 %
Z")Tp in the denominator can be divided by @ because t1
k (w1xz"). As for the terms in the numerator, both

. ) and (ty x Ft))TFp
(t1*2") (p"p) (t2x2")p T 7" become zero,

and the only left term is 20 p t1(t2x z27) p = 20 D.

The common divisor @ itself defines two critical
planes tip =0 and (t2x z")Tp = 0. The two planes are
not too interesting because the camera center is on the
planes and they are also perpendicular to the image
plane. We will leave the planes here and focus on the
simplified depth.

2.2. Rotationally symmetric surfaces

By using the common divisor @, the first critical

surface becomes much simplified
P 2f pTt (ta x )T p
1 - - " -
7?)1 ((,fzwg - fwl) X Z) (tg X zg‘T-p
+2f (p'p)p" (w1 x 2) (t2 x 2)T'p
2(ty - t2) f'

(—( ooz < 27 ((mxaﬁ)'““
2(ta - (n % 2)(07D) /"
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which gives a single depth value for each image circle
r2= x2+ y2= pTp - 1. The resulting critical surface is
rotationally symmetric around the optical axis.

The second critical surface can be solved
correspondingly using the relationship between the two
depthmaps. Equation 13 allows the the following
simplification:

((Fp) x w2~ F(p x w1)) *(2"x p) =
(z'x (w2 - fw1))* (2% p).
Accordingly, the second critical surface is simplified to
7, — thg‘(éxp)
P (Fh—Zi(Ex (wr— fen)) - (2 xp)
(t1 + t2) 2
(tl ‘tl)f — 1ty - (}3 X (Lu‘g — fwl)) le

(15)

which is again rotationally symmetric.'! Two examples

of such critical surface are given in Figure 2(a) and 2(b).

The pair of critical surfaces are both rotationally
symmetric, but have different curvatures and even
different curvature signs.

For a limited camera viewing angle, the portion of
visible critical surfaces can be near-spherical,
near-planar, or even a perfect plane depending on the
motion and radial distortion function. For example,

when f(r?) = 1/(1-Ar?) and w1 x z" = 0, we are given a
ANt +t2)
tQ-(TC’Xn‘;Jz)‘

constant depch1 -
Let us revisit the UAV capture in Figure 1(a), where the
camera moves parallel to the ground and the camera
points to the ground. The visible surface relative to each
camera is near-planar and thus have caused the
ambiguity in radial distortion estimation.

2.3. Experiments

We devise two synthetic image sequences to verify
the radial distortion ambiguity and demonstrate its
impact on multi-view 3D reconstruction. We feed
noise-free feature coordinates and perfect matches to
VisualSFM [19], and compare the automatically
reconstructed models to the ground-truth models.
Although the reconstruction method is not
velocity-based, we expect the same ambiguity with
densely sampled image sequences.

1 There exist other configurations where only one critical surface is
rotationally symmetric. For example, when t1°z" = (w1 - w2)*z" = ti*w1=
ti1*w2= 0 and the second camera moves forward t; x 2" = 0, only the first
critical surface is rotationally symmetric

11
7 =
! (2% (w2 — fwi))g et

. See Figure 2(f) for an example.

ty -
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First, as shown in Figure 3, we move a camera above a
planar point grid at a constant height and keep the
camera pointing to the plane. The distorted images are
generated for the radial distortion f{r?) = 1 + Ar?, where
A = 0.2. This can be seen as an ideal version of the
capture in Figure 1(a). Similar to the real capture, the
automatic reconstruction of the synthetic dataset
produces an incorrect distorted 3D model due to the
ambiguity of radial distortion. Second, we use a point
grid on a perfect sphere. The camera moves on a
co-centered outer sphere and points to the sphere center.
The distorted images are generated for the radial
distortion f{r?) = 1+Ar2, where A = -0.2. The spherical
surface is rotationally symmetric and ambiguous for the
reconstruction. As shown in Figure 4, the automatic
reconstruction produces a concave surface instead.

The experiments show that multi-view reconstruction
can fail to self-calibrate radial distortions under certain
critical ~configurations. The distortion of the
reconstruction is caused locally by the curvature
difference between the critical surface pairs and
globally by the curvature error accumulation from the
persistent ambiguity in the entire capture.

Typical SfM systems initialize the radial distortions of
new cameras to zero and rely on bundle adjustments to
optimize the parameters. We observe a tendency to
under-estimate the radial distortions in near-degenerate
configurations, which can be partially explained by the
zero initialization. The ambiguity of radial distortion is
likely to cause significant inaccuracy when the radial
distortions are sever or when the initial estimations are
too inaccurate. Also note there would be more
ambiguity when using more radial distortion parameters,
for example, f{r?) = 1 + A1r2+ Axr* compared to f(r?) =
1+ A2,

3. Conclusions and future work

This paper presents the critical configurations for radial
distortion self-calibration under a general radial
distortion model. It is shown that radial distortion
introduces a new kind of ambiguity into SfM. Unlike
the pure linear camera parametrization, critical surfaces
exist even for known translations and known rotations
due to radial distortion. In particular, this paper
demonstrates the practically important critical
configurations that should be avoided in real capture for
radial distortion self-calibration.

This paper is not meant to be a complete study of all
possible ambiguities related to radial distortion. The
author wishes to conduct a numerical stability study on
neardegenerate  congurations and extend the
investigation from continuous motion to discrete
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9]

F. Kahl and B. Triggs. Critical motions in euclidean

(a) The automatic reconstruction estimates an incorrect A°= 0.02 (b) The ground-truth reconstruction using the known A = 0.2

Figure 3. Reconstruction of a planar point grid. The blue pyramids are the cameras and the black dots are the reconstructed points.

(a) The automatic reconstruction estimates an incorrect A= 0.025
Reconstruction of a point grid on a sphere. The blue pyramids are the cameras and the black dots are the reconstructed points.

(b) The ground-truth reconstruction using the known A = -0.2 Figure 4.

viewpoints in the future.
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