指导教师: ____杨刚_____ 提交时间: ___2016/03/17_

$\begin{array}{c} \end{tabular} \label{eq:starses} \end{tabular} \begin{tabular}{c} \end{tabular} \end{tabular}$

No:	01	-			
姓名:_	何	琪			
学号:_	2013302547				
班号:	100	11304			

使用线性谱聚类的超像素分割

 Zhengqin Li
 Jiansheng Chen

 北京清华大学电子工程系

li-zq12@mails.tsinghua.edu.cn jschenthu@mail.tsinghua.edu.cn

摘要

在本文中,我们提出了一个超像素分 割算法—线性谱聚类(LSC),从而产生致 密均匀的低计算处理开销。基本上,一个 标准化的削减方式的超像素分割采用了基 于相似性度量,测量颜色的相似性和空间 图像像素点之间的距离,而不是使用传统 的特征算法,我们使用核函数导致的像素 值和坐标前明确映射到高维特征空间来近 似相似性的度量。我们重新发现这个特征 加权空间各点,加权 k-均值和正常化削减 共享相同的目标函数的最佳点。因此,它 是可能的优化及应用简单的归一化削减 ITER k-均值提出的特征空间聚类成本函数。 LSC 线性的计算复杂度和存储效率高并能 保持图像的全局属性。实验结果表明, LSC 执行同样或更好的比在图像分割中常用的 几种评价指标对艺术的超像素分割算法。

1、简介

超像素分割是一个越来越流行的图像 预处理技术应用在许多计算机视觉应用, 如图像分割图像解析[17],[19],目标跟 踪和三维重建[22],[9]。它提供了一个简 洁的图像表示,通过分组像素感知有意义 的小补丁,坚持目标边界。相对于像素刚 性图像表示,超像素与人类视觉认知的一 致性,含有较少的冗余。此外,致密均匀 的超像素分割可以作为视觉特征提取[12] 空间的支持。许多不同的超像素分割算法 被提出

图 1。利用所提出的聚类算法将图像[13]分为 1000 / 500 / 200 超像素。

以满足各种应用[17][8][5][21][11]。 它被广泛理解,遵循的超像素分割性一般 是可取的。首先,作为应坚持良好的自然 图像的边界和每个 superpixel 不应该有多 个对象重叠。其次,作为预处理技术为了 提高计算机视觉任务的效率,超像素分割 应该具有较低复杂性本身。最后但并非最 不重要的,全球的图像信息,这是非常重 要的人类视觉认知,应考虑适当。在分割 过程中运用感知的重要非本地线索组无关 的图像像素在语义上有意义的区域,这是 至关重要的。不过,考虑到像素之间的全 球关系通常导致计算复杂度的大幅增加。 一个典型的例子是基于特征的归一化的削 减方案(NCUTS)基于超像素分割算法提出 了[17]。因此,最实用的超像素分割算法, 如[5][21][11],主要是基于图像局部信 息的分析。这些方法可能无法正确分割图 像区域的高强度变异[8]。

为了解决这个问题,我们提出了一个 招像素分割算法,线性谱聚类(LSC),不 仅捕捉感知的重要图像全局性质,而且运 行在高存储效率的线性复杂度。在 LSC, 我 们映射的每一个像素点在一一零维特征空 间中的加权算法应用于图像分割。由于在 这十维特征空间中的加权 k-均值聚类和原 来的像素空间中的归一化的等价性,非本 地信息被隐式地保留下来。在特征空间中 的简单加权 k-均值聚类,可以用来优化定 义的分割成本函数的归一化割。图 1 显示 了超像素分割结果LSC。我们将证明效率 通过进一步的实验效果和 LSC。本文的其 余部分组织如下。在2节中,我们简要地 回顾了现有方法的超像素分割。第3节提 出了LSC的方法。实验结果表明在第4节。 最后一节总结我们的工作。

2、相关工作

在早期的研究中,针对图像分割算法 直接用于生成超像素,这样 FH [8], Mean Shift [5]和[21]快速移。在 FH,每个超像 素使用最小生成树的表示,两超像素合并, 如果边缘的最大重量里面是大于最小重量 的边缘,连接它们。均值漂移和快速移双 模式搜索试图最大化密度函数的方法,通 过向高密度区域移动像素。像素收敛到相 同的模式,制定一个超像素。这些算法没 有明确控制的大小和数量的超像素和密实 度不考虑。超像素从而产生通常是不规则 的大小和形状和趋向于与多个对象重叠。

另一种广为人知的算法采用标准化 削减公式[18]。然而,传统的基于特征的 解决方案是高计算复杂度,进一步增长时, 计算的特征向量的数目增加。为超像素分 割,特征向量的数目等于超像素的预期数 量,这通常比传统的节段数大很多图像分 割。因此,便于规范化基于超像素分割的 削减,任马利克提出的二步算法(NCUTS) [17],其中像素首先分为大区域的基于特 征归一化削减和直接 k-均值集群,然后通 过这些地区进一步划分成小超像素。由于 它的启发性,是更有效的比 NCUTS 其他方 法在超像素数的增长。

以往的研究表明,算法不考虑空间紧 致性通常会导致下的分割,特别是在有对 比度或阴影的时候[11]。上述四种算法中, NCUTS[17]是唯一一个以压实度为隐式 代价。然而,计算复杂度高限制了它的适 用性。为了解决这个问题,几个其他的方

图2不同的超像素分割算法的比较。 (a)SEEDS, (b)Lattice, (c)Turbopixel, (d)EneOpt0, (e)EneOpt1, (f)quick shift, (g)Ncuts, (h)SLIC,(i) ERS and (j)LSC.

图像[13] 分割成 400 / 200 的超像素法

已经被提出以紧凑和相对较低的计算规则 的处理复杂性。turbopixel 算法[11]产生的 高度统一的格子状的超像素通过扩张定期 分布的种子。然而,由于稳定而水平集方 法的效率问题,处理从而产生了目前相对 低的坚持边界,在实践中,该算法是缓慢的。 Veksler 等人。制定超像素分割为能量优化 使用最小割/最大流解决问题算法[4][3] [10]。作者进一步扩展了该算法两种 (eneopt0 和 eneopt1) 平衡之间的形状规 律性和边界坚持不同[20]。穆尔等。提出 了一种算法(格)保留在 superpixel 定期晶 格结构分割[15][14][]。不过,质量的 superpixel 依赖于预先计算的边界概率地 图。刘等。在[12]一个聚类目标功能包括 熵率(ERS)的一个随机的散步和一个鼓励 这一代人的平衡词具有相似尺寸的超像素。 人能够保持可能被平滑的锯齿状物体边界 通过其他算法。然而,计划的不规则形状 作为可能成为一个潜在的缺陷特征提取 [1]。伯格等人。介绍了[2]中的种子鼓励 色彩均匀性的能量函数形状规律。爬山算 法用于优化。然而,种子也受到来自高度 形状不规则性和超像素的数量是很难的 控制。阿成达等人。提出了线性聚类算法 (SLIC)产生的迭代处理简单的 k-均值聚 类在合并五维颜色和坐标空间。尽管它 简单, SLIC 已被证明在各种计算机视觉应 用[22]是有效的。尽管如此,作为一个地 方基于特征的算法,在 SLIC 和关系全球图 像属性不明确。与我们所提出的方法密切 相关的另一项工作介绍了[7],其中 Dhillon 等人。证明分析在原来的像素空间的归一 化是相同的在高维加权 k-均值集群特征空

间通过重写加权的 k-均值聚类跟踪最大化 问题。然而,在[7],高维度特征空间没有 被明确定义核心技巧必须使用。生成的核 矩阵可以在实践中非常大。例如,一个中 等大小的图像与 N = 105 像素将产生一个 30GB 的内核矩阵的情况下,它是密集的, 导致严重恶化在时间和空间复杂度。此外, 这核矩阵必须是正定的,以保证收敛迭代 加权 k-均值。这些问题限制了该算法的应 用,尽管它固体理论基础。我们会发现这 些问题通过调查的关系,可以有效地解决 在特征空间中的内积与图像像素间的相似 性。超像素分割在图 2 中比较了不同算法 的结果。

3、超像素的线性谱聚类

在本节中,我们将提出 LSC 的超像素 分割算法不仅产生超像素随着艺术境界的 坚持,但也捕捉全局图像属性。提出了 LSC 算法根据调查研究的关系归一化的削减和 加权 K 均值的目标函数。我们发现,优化 这两个目标函数是等价的,如果两点之间 的相似性输入空间等于加权的内部乘积在 精心设计的2个相应的向量高维特征空间。 因此,简单加权 k-均值聚类在这个功能空 间可以用于替换高度复杂的基于特征的方 法最大限度地减少归一化割目标函数。比 较以加权核 k-均值聚类分析[7], LSC 避免 了大核矩阵的计算和收敛性条件可以很自 然地满足。进一步限制加权 k-均值搜索空 间,LCS 实现了线性复杂度,同时保持高质 量所产生的超像素。

为了方便推演,我们简要回顾一下这 个问题加权 K-均值聚类和标准化的定义 削减。为清楚起见,我们用小写字母,如 p,q,以代表在我们的情况下的数据点或 象素,以便在被集群输入空间。在加权 K-均值聚类里,每个数据点 p 被分配有一个 权重 w (p)。设 K 是簇的数目; π_k 为第 k (K=1,2,...,K)的簇;和 ϕ 表示的数据 点映射到一个更高的功能为改善线性可分 维特征空间。加权 K 均值目标函数定义在 (1),其中 m_k 是的中心 π_k 作为在(2) 中定义。 F_{k-m} 的可以以迭代的方式被有 效地最小化。

$$F_{k-m} = \sum_{K=1}^{K} \sum_{P \in \pi_{k}} w(p) | \not p(-m_{k})^{2}$$
(1)

$$m_k = \frac{\sum_{q \in \pi_k} w(q)\phi(q)}{\sum_{q \in \pi_k} w(q)}$$
(2)

在归一化的分割,每个数据点对应于一个 节点一个图 G = (V, E, W), V 是所有点 的集合; E 是边集; W 是一个函数的特征 数据点间的相似性。k 归一化的削减标准 是最大限度地发挥目标函数 *F_{Ncuts}* s 定义 (3),其中 W (p,q)为两点间的相似性 和几个解决方案为了解决这个优化问题已 经提出[18][23][16]。所有这些解决方 案都是基于大亲和力矩阵的特征值分解因 此,本质上计算比较复杂。

$$F_{Ncuts} = \frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{p \in \pi_k} \sum_{q \in \pi_k} W(p,q)}{\sum_{p \in \pi_k} \sum_{q \in V} W(p,q)}$$
(3)

通过引入一个映射数据点的内核矩阵 到一个高维特征空间,Dhillon 等人。显示 加权 k-均值聚类之间的连接和归一化割重 写优化 F_{k-m} 和 F_{Ncuts} 相同的矩阵迹的最大 化问题[7]。在这样的制剂,收敛 F_{k-m} 的-迭代最小化可以保证只有当内核矩阵是正 定的。不过,这不能总是保证。解决这个问 题并进一步揭示了 F_{k-m} 的关系 F_{Ncuts} ,我 们提出以下推论。方程(4)以及(5)也 可从[7]的结果中推断出。

推论1优化的目标函数 k-均值和归一化的 削减是在数学上加权等效如(4)和(5) 持有的

$$\forall \mathbf{p}, q \in V, w(p)\phi(q) \bullet w(q)\phi(q) = W(p,q)$$
(4)

$$\forall p \in V, w(p) = \sum_{q \in V} W(p,q)$$
(5)

方程 (4) 表示加权内积高维特征空间 中的向量等于两者对应点的相似性 在输入空间中,(5) 表示每一个点的加权 k-均值聚类等于总连接对应节点的边的权 重所有其他节点的归一化分割。为了证明 corollpary 1,我们首先重写 F_{k-m} (6),其 中克 $\sum_{k=1}^{K} \sum_{p \in \pi_k} w(p) || \phi(p)]$ 是一个 常数独立的聚类结果。(6)的详细推导 在补充材料里说明。

组合(4),(5)和(6),我们有(7), 从中它可以很容易地观察到,减少*F_{k-m}*是 严格相当于最大化 FNcuts。换句话说,通过仔细构造中定义的高维特征空间
经φ,归一化的削减的划分结果应该是相
同的,以该加权 K 均值聚类的在其最佳点。
这个结论作为我们 LSC 算法的基础。

$$F_{k-m} = \sum_{k=1}^{K} \sum_{p \in \pi_{k}} w(p) || \phi(p) - \frac{\sum_{q \in \pi_{k}} w(q) \phi(q)}{\sum_{q \in \pi_{k}} w(q)} ||^{2}$$

$$= \sum_{k=1}^{K} \sum_{p \in \pi_{k}} w(p) \| \phi(p) \|^{2} - \sum_{k=1}^{K} \frac{\sum_{p \in \pi_{k}} w(p)\phi(p) \|^{2}}{\sum_{p \in \pi_{k}} w(p)}$$
$$= C - \sum_{k=1}^{K} \frac{\sum_{p \in \pi_{k}} w(p)\phi(p) \cdot w(q)\phi(q)}{\sum_{p \in \pi_{k}} w(p)}$$
(6)

在推论 1,两个充分条件(5)可以通 过使用边缘权重的总和容易地实现标准化

作为削减加权 K-均值点权值

$$F_{k-m} = C - \sum_{k=1}^{K} \frac{\sum_{p \in \pi_k} \sum_{q \in \pi_k} W(p,q)}{\sum_{p \in \pi_k} \sum_{q \in V} W(p,q)}$$
(7)

满足(4),但是,需要的我们精心挑选相 似的功能。等式(4)可以改写为(8), 其中左侧是两个矢量的内积在高维特征空 间。事实上,(8)可以也被认为是限定的 对称核函数,指示它必须满足的积极条件 [6]。另外,为了避免核矩阵,W必须是

可分离到允许映射函数的明确表示^Ø

$$\phi(p) \bullet \phi(q) = \frac{W(p,q)}{w(p)w(q)} \tag{8}$$

为了找到对 W (p, q) 以合适的形式, 我们首先调查广泛使用欧几里德距离的基 于像素相似的测量。用于彩色图像的每个 像素中,我们表示它采用五维向量 (*l*,*α*,*β*,*x*,*y*),在其中*l*,*α*,*β*,是它的 颜色成分值在 CIELAB 色彩空间;x,y 是在 垂直和水平坐标在图像平面。为了简单不 失一般性的损失各成分的范围是线性归一 化到[0,1]。CIELAB 色空间被采用,因为据 信,该欧几里得距离近在这个空间感知均 匀[1]。鉴于两个像素

$$p = (l_p, \alpha_p, \beta_p, x_p, y_p)$$
和
 $q = (l_q, \alpha_q, \beta_q, x_q, y_q)$ 一个它们之间的
相似性度量可以被定义为(9),其中 \hat{W}_c
和 \hat{W}_s 用于测量颜色相似和空间接近分
别。两个参数 C_c 和 C_s 用于控制的相对
重要性色彩和空间信息。我们乘的第一项
 \hat{W}_c (p,q),以便2.55²的以与一致标准
清晰度 CIELAB.

 $\widehat{W}(p,q) = C_c^2 \widehat{W}_c(p,q) + C_s^2 \cdot \widehat{W}_s(p,q)$

$$\widehat{W}_{c}(p,q) = 2.55^{2} [2 - (\alpha_{p} - \alpha_{q})^{2} - (\beta_{p} - \beta_{q})^{2}] + [1 - (l_{p} - l_{q})^{2}]$$

$$\widehat{W}_{s}(p,q) = [2 - (x_{p} - x_{q})^{2} - (y_{p} - y_{q})^{2}]$$
(9)

虽然**W**(*p*,*q*)具有非常明确的物理意义测 量像素的相似性,它不能直接在使用我们 的方法,因为它不符合条件阳性[6]要求 (8)。详细解释可以发现补充材料。为了 解决这个问题,我们尝试找**W**(*p*,*q*)的适 当近似。

$$\hat{W}(p,q) = C_s^2[g(x_p - x_q) + g(y_p - y_q)] + C_c^2[g(l_p - l_q) + 2.55^2(g(\alpha_p - \alpha_q) + g(\beta_p - \beta_q)]]$$

 $g(t) = 1 - t^2, t \in [-1, 1]$ (10)

我们重写(9)为(10),以显示该 $\widehat{W}(p,q)$ 是一个非负一些简单的实例的线 性组合功能个(t)的,可扩展为均匀在 (11)中所示会聚傅立叶级数。的系数 这一系列收敛到0很快在 $(2K + 1)^3$ 的 速度。因此,个(t)可以很好地通过的 第一项近似在系列如在(12)表示。

$$g(t) = \sum_{k=0}^{\infty} \frac{32(-1)^k}{\left[(2k+1)\pi\right]^3} \cos(\frac{(2k+1)\pi t}{2}),$$
$$t \in [-1,1]$$
(11)

$$g(t) = 1 - t^2 \approx \frac{32}{\pi} \cos \frac{\pi}{2} t, t \in [-1, 1]$$
(12)

简单地省略常数乘法器 $32/\pi$, $\hat{W}(p,q)$ 可以通过中的W(p,q) (13)中所定义 来近似。不比g(t), $\cos \frac{\pi}{2}t$ 是正定的, 从而导致的阳性W(p,q)。实际上,根据 余弦的属性函数,W(p,q),可以直接写 入的内积形式示出在(4),其中 ϕ 并在 (14)中所定义。

 $W(p,q) = C_s^2 \left[\cos\frac{\pi}{2}(x_p - x_q) + \cos\frac{\pi}{2}(y_p - y_q)\right] + C_c^2 \left[\cos\frac{\pi}{2}(l_p - l_q) + 2.55^2(\cos\frac{\pi}{2}(1 - y_q))\right] + C_c^2 \left[\cos\frac{\pi}{2}(1 - y_q) + 2.55^2(\cos\frac{\pi}{2}(1 - y_q))\right]$

$$\alpha_p - \alpha_q) + \cos\frac{\pi}{2}(\beta_p - \beta_q)]$$
(13)

$$\phi(P) = \frac{1}{w(p)} (C_c \cos \frac{\pi}{2} l_p, C_c \sin \frac{\pi}{2} l_{p,2.5})$$
$$C_c \cos \frac{\pi}{2} \alpha_p, 2.55C_c \sin \frac{\pi}{2} \alpha_p, 2.55C_c \cos \frac{\pi}{2}$$

$$\beta_p, 2.55C_c \sin \frac{\pi}{2} y_p)$$

$$w(p) = \sum_{q \in V} W(p,q) = w(p)\phi(p) \cdot \sum_{q \in V} w(q)\phi(q)$$
(14)

到现在为止,我们已经明确地定义一 个十维特征空间(14),使得加权的 Kmeans 聚类在该特征空间上大致等同于在 输入空间标准化的削减。注意到,在 (13)中定义的相似性的作用下,无论是 对加权核 K 均值内核矩阵和归一化的削减 亲和基质将是高度密集的,使用现有的方 法时,导致高计算复杂度。相反,通过直 接涂布加权 K 均值在十维特征空间中,归 一化的切口的目标函数可有效地优化。

基于以上分析,我们提出的LSC 超像 素分割算法作为输入超像素的期望数量, K.在LSC,图像像素是第一映射到加权个 由(14)界定的10维特征空间。 k 种子 像素然后均匀采样的过与水平和垂直的整 个图像区间为 Vx 和 Vy,而 v_x / v_y等于图 像的纵横比。为了避免噪声和边界象素轻 微扰动后[1],因为作为搜索中心及其征 向量使用这些种子用作相应簇的初始加权 的装置。然后,每个像素被分配给的加权 平均最接近在特征空间中的像素的矢量群 集。像素分配后,每个簇的加权平均和搜 索中心将相应地更新。迭代地执行上述的 两个步骤,直至收敛。像素分配给该同一 个集群形成一个超像素。

从理论上说,每个集群的搜索空间应 覆盖整个图像以满足推论 1。然而,对于 超像素,本地紧凑是一个普通的现有。其 他也就是说,它可能不利于分配像素远离 彼此为相同的超像素中人类感知的术语。 因此,我们采用了常见的做法[20][1] 在通过限制的搜索空间超像素分割 每个集群的 $\tau v_x \times \tau v_y$ 的大小,其中 τ \geq 1 是一个参数用于平衡地方的紧凑性和 全局最优。我们只需选择 $\tau = 2$ 执行。

上述过程提供的连通性没有执法 超像素的,这意味着没有保证该同一集群 中的象素形成一个连接组件。为了解决这 个问题,我们凭经验合并小型的,孤立超 像素这是预期的不到四分之一超像素大小 其巨大邻域超像素。当有合并多个候选 我们选择最近的一个在十维特征空间。该 算法概括在算法1。

假设图像的像素的数目的复杂性是 N 该特征映射显然是 O(N)。 通过限制每 个集群的搜索空间的复杂性像素的分配从 O(KN)减少到 O(N)在每一次迭代。 的更新的重量的复杂性手段和搜索中心也 是 O(N)。该合成步骤需要 O(nz)操 作,其中 z 表示的数目的小孤立超像素被 合并和 n 是平均数量与其相邻的邻居。这 样,整体 LSC 的复杂度 O(kN + nz), 在这里 k 是迭代的次数。在实践中, $nz \ll NI$ 并且 k = 20将足以与状态产 生超像素艺术质量。因此,LSC 是线性复杂度为O(N)和实验将表明,LSC,是速度最快超像素分割算法。

4.实验部分

我们比较 LSC 的现有技术下超像素八个状态分割算法包括 SLIC[1], SEEDS[2] Ncuts[23], Lattice[15], ERS[12], Turbopixel[11], EneOpt1 和 EneOpt0[20]。对于所有的八个算法的实 现都是基于可公开获得的代码。实验是在 伯克利进行分割数据库[13]由三百测试图 像与人类分段地面实况。的边界坚持通过 不同的算法生成的超像素进行比较使用图 像三种常用的评价指标分割:在分割错误 (UE),边界召回(BR)和可实现的分割 精度(ASA)。

在这三个指标中, UE 测量的百分比 从地面实况边界泄漏像素。它实际上通过 惩罚评价超像素分割质量超像素与多个对 象重叠。该 UE 的定义在这里通过[1]使 用。下 UE 指示更少的超像素跨越多个对 象。 BR 正确测量地面实况界的分数由超 像素的边界恢复。一个真正的边界像素被 认为是要正确地恢复,如果它落在内从至 少一个超像素边界点 2 像素。一个高 BR 表明,很少有真正的界限被错过。ASA 被 定义为最高可达到的对象分割利用超像素 作为单位[12]时的精度。通过每个标签具 有超像素的地面实况片段最大重叠面积, ASA 计算为分数未从接地泄漏标记像素的 真相界限。高 ASA 表明,超像素与图像 中的对象遵守良好。图3显示了实验结果

这对所有的都是平均值 300 测试图像在伯 克利分割数据库。

计算效率也是一个重要的因素评估的 超像素分割算法的性能。在我们的实中, 我们计算出平均运行时间不同的算法和结 果示在图 3 (d)所示。所有的实验都在 一个执行台式机配备了英特尔 3.4 GHz 双 核处理器和 2GB 内存。的时间消耗 Ncuts 算法[23]是比其他的高得多因此方法并省 略图 3 中的 (d) 所示。

为了更清楚,我们也列出的数字值 当指标超像素的 K = 400,表1 也总结了 计算复杂性不同的算法。从图 3 和表1 中,它可以是观察到,在边界粘附而言, 所提出的 LSC 是最好算法的。对于相对大

(b) BR

量的超像素,LSC执行最好。此外,LSC 是线性复杂并且是算法中具有最高的时间 效率。此外,质实验表明,LSC表现最 好。我们选择5种算法(SEEDS,Ncuts, SLIC,ERS和LSC),该实现最低的UE时,K = 400为直观比较。根据图3,这五个算 法一般优于其余三种算法在UE,BR以及 ASA。图4示出超像素分割的一些典型的 视觉效果使用这些算法。一些细节的分割 结果强调以方便接近目视检查。直观地 说,LSC取得最满意的感知分割结果不同 类型的图像。

根据图 3, EneOpt0 执行最差,五个选 定算法中的边界遵守条款,可能是因为它 使用的最小的变化这可以从切割的偏见遭 受削减战略出小像素集,导致下分割误差 在实践中为示于图 4 (a)中。其实, EneOpt0 间接通过设置上控制所述超像素 密度绑定的超像素的大小。然而,可能难 以以产生利用 EneOp0 超像素的所希望的

(c) ASA

(d) Time

数特别是对于小 K, 因为大型超像素往往 分割成小块的高可变性的区域。如对于 Ncuts,一个主要缺点是其极低的时间效 率。在提出的两步启发式算法[17]对于加 速度造成 Ncuts 成为无效边界坚持以 K 增 加的条款。即使, Ncuts 仍是最慢的算 法,如表1所示。作为本土特色为基础的 方法,SLIC 是第二快选定的算法中,根据 我们的实验结果。通过 SLIC 生成的超像 素也感知上令人满意大多数情况下。然 而,相比所提出的 LSC 算法,边界粘附 SLIC 的是竞争力较弱的根据图 3。实际 上, SLIC 和 LSC 之间的主要差别是该迭代 加权 K-均值聚类算法进行内不同功能的 空间。然而,这种差别是因为不像 SLIC 关键依赖于地方特色只是,LSC 成功连接 局部特征化运作通过引入全局优化目标函 数 *𝑍* 让全球形象结构隐用来产生更合理

的分割结果。在边界坚持而言,ERS和 SEEDS 非常接近 LSC 和 SEEDS 可能是最快 的超像素存在分割算法。然而,这是实现 通过牺牲规律和感知满意度所生成的超像 素,如图4(d)中示出。

LSC 使用两个参数 Cs 和 Cc 的相对控 制颜色相似性和空间接近的意义在像素之 间测量相似性。其实,什么是真正有意义 的是他们比^{τ_c} = Cs /Cc。 通常,较大的 τ_c 的值表示对产生的倾向具有较高的形 状规整,而小超像素的^{τ_c}通常导致更好 的边界坚持在所示图 5.在我们的实验中, 我们设置^{τ_c}=0.075。 我们有也验证使用 近似 $\hat{W}(p,q)$ 的有效性W(p,q)。超过 98.8%的实际案例,相对造成这种近似不 超过 0.5%的误差。

5 结论

我们目前在本文中新型的超像素分割算 法,LSC,产生紧凑和规则形超像素具有 线性时间复杂度和高内存效率。在LSC 最 关键思想是明确利用优化目标之间的连接 加权 K-手段,通过引入标准化的削减一 个精心设计的高维空间。如这样,LSC 达到既坚持边界和全局通过简单的局部特 征图像结构毅力基于业务。实验结果表 明,LSC 一般超额完成的既算法大多数量 和质量。这项工作是由北京市高等教育支 持精英青年教师项目(YET P0104),清华 大学大学倡议科研计划

(20131089382),中国国家自然科学基金(61101152),.

索引

[1] R. Achantan, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-ofthe-art superpixel methods. IEEE Trans. on PAMI, 34(11):2274-2281, 2012. 2, 4, 5 [2] M. Bergh, X. Boix, G. Roig, B. Capitani, and L. V. Gool. Seeds: Superpixels extracted via energy-driven sampling. Proc. of ECCV, 7578:13-26, 2012. 2, 5 [3] Y. Boykov and V. Kolmogrov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. on PAMI, 26(9):1124-1137, 2001.2 [4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. on PAMI, 23(11):1222-1239, 2001. 2 [5] D. Comaniciu and P. Meer. Mean shift: a robust approach towards feature space analysis. IEEE Trans. on PAMI, 24(5):603-619, 2002. 1, 2 [6] N. Cristianini and J. Taylor. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press New York, NY, USA,

2000. 4 [7] I. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Trans. on PAMI, 29(11):1944-1957, 2007. 2, 3 [8] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2):167-181, 2004. 1, 2 [9] D. Hoiem, A. Efros, and M.hebert. Atuomatic photo pop-up. ACM Trans. on Graphics, 24(3):577-584, 2005. 1 [10] V. Kolmogrov. What energy functions can be minimized via graph cuts? IEEE Trans. on PAMI, 26(2):147-159, 2004. 2 [11] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi. Turbopixel: fast supepixels using geometric flow. IEEE Trans. on PAMI, 31(12):2209-2297, 2009. 1, 2, 5 [12] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpiexl segmentation. Proc. of CVPR, pages 2097 -2104, 2011. 1, 2, 5, 6 [13] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to

evaluating segmentation algorithms and measuring

ecological

statistics. Proc. of ICCV, 2:416-423, 2001. 1, 2, 5

[14] A. Moore, S. Prince, and J.Warrell. lattice cut -

constructing

superpixels using layer constraints. Proc. of CVPR,

pages

2117-2124, 2010. 2

[15] A. Moore, S. Prince, J. Warrell, U.

Mohammed, and

G. Jones. Superpixel lattices. Proc. of CVPR, pages

1–8,

2008. 2, 5

[16] A. Ng, M. Jordan, and Y.Weiss. On spectral

clustering: analysis

and an algorithm. Proc. of NIPS, pages 849–856, 2001.

3

[17] X. Ren and J. Malik. Learning a classification model for

segmentation. Proc. of ICCV, 1:10-17, 2003. 1, 2, 6

[18] J. Shi and J. Malik. Normalized cuts and image

segmentation.

IEEE Trans. on PAMI, 22(8):888-905, 2000. 2, 3

[19] J. Tighe and S. Lazebnik. Superparsing:

scalable non parametric

image parsing with superpixel. Proc. of ECCV,

5:352-365, 2010. 1

[20] O. Veksler, Y. Boykov, and P. Mehrani.

Superpixels and supervoxels

in an energy optimization framework. Proc. of

ECCV, pages 211–224, 2010. 2, 5

[21] A. Veldadi and S. Soatto. Quick shift and kernel methods for

mode seeking. Proc. of ECCV, pages 705–718, 2008. 1, 2

[22] S. Wang, H. Lu, F. Yang, and M. Yang. Superpixel tracking. Proc. of ICCV, 1:1323–1330, 2011. 1, 2 [23] S. Yu and J. Shi. Multiclass spectral clustering. Proc. of ICCV, 1:313–319, 2003. 3, 5, 6

Table 1. Performance metrics of superpixel segmentation algorithms at $K = 400$										
	EneOpt0	SEEDS	ERS	Lattices	Neuts	SLIC	Turbo	LSC		
Adherence to boundaries										
Under segmentation error	0.230	0.197	0.198	0.303	0.220	0.213	0.277	0.190		
Boundary recall	0.765	0.918	0.920	0.811	0.789	0.837	0.739	0.926		
Achievable segmentation accuracy	0.950	0.960	0.959	0.933	0.956	0.956	0.943	0.962		
Segmentation speed										
Computational complexity	$O(\frac{N^3}{K^2})$	$\mathcal{O}(N)$	$O(N^2 lgN)$	$O(N^{\frac{3}{2}}lgN)$	$\mathcal{O}(N^{\frac{2}{3}})$	$\mathcal{O}(N)$	$\mathcal{O}(N)$	$\mathcal{O}(N)$		
Average time per image	8.22s	0.213s	2.88s	0.748s	273s	0.314s	20.2s	0.919s		

Figure 4. Visual comparison of superpixel segmentation results when K = 400.