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Abstract

This paper studies panoptic segmentation, a recently
proposed task which segments foreground (FG) objects at
the instance level as well as background (BG) contents at
the semantic level. Existing methods mostly dealt with these
two problems separately, but in this paper, we reveal the un-
derlying relationship between them, in particular, FG ob-
Jjects provide complementary cues to assist BG understand-
ing. Our approach, named the Attention-guided Unified
Network (AUNet), is a unified framework with two branches
for FG and BG segmentation simultaneously. Two sources
of attentions are added to the BG branch, namely, RPN and
FG segmentation mask to provide object-level and pixel-
level attentions, respectively. Our approach is generalized
to different backbones with consistent accuracy gain in both
FG and BG segmentation, and also sets new state-of-the-
arts both in the MS-COCO (46.5% PQ) and Cityscapes
(59.0% PQ) benchmarks.

1. Introduction

Scene understanding is a fundamental yet challenging
task in computer vision, which has a great impact on
other applications such as autonomous driving and robotics.
Classic tasks for scene understanding mainly include ob-
ject detection, instance segmentation and semantic seg-
mentation. This paper considers a recently proposed task
named panoptic segmentation [23], which aims at finding
all foreground (FG) objects (named things, mainly includ-
ing countable targets such as people, animals, tools, etc.) at
the instance level, meanwhile parsing the background (BG)
contents (named stuff, mainly including amorphous regions
of similar texture and/or material such as grass, sky, road,
etc.) at the semantic level. The benchmark algorithm [23]
and MS-COCO panoptic challenge winners [1] dealt with
this task by directly combining FG instance segmentation
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(a) Input Image (b) Panoptic Segmentation

(c) Foreground: things (d) Background: stuff

Figure 1. Given an image 1(a), the goal of panoptic segmenta-
tion 1(b) is to find FG things at the instance level 1(c) and BG
stuff at the semantic level 1(d). The things of the same class share
the same color family but appear in different intensities. All these

results are produced by the proposed approach.

models [15] and BG scene parsing [45] algorithms, which
ignores the underlying relationship and fails to borrow rich
contextual cues between things and stuff.

In this paper, we present a conceptually simple and uni-
fied framework for panoptic segmentation. To facilitate in-
formation flow between FG things and BG stuff, we com-
bine conventional instance segmentation and semantic seg-
mentation networks, leading to a unified network with two
branches. This strategy brings an immediate improvement
in segmentation accuracy as well as higher efficiency in
computation (because the network backbone can be shared).
This implies that panoptic segmentation benefits from com-
plementary information provided by FG objects and BG
contents, which lays the foundation of our approach.

Going one step further, we explore the possibility of in-



tegrating higher-level visual cues (i.e., beyond the features
extracted from the end of the backbone) towards the more
accurate segmentation. This is achieved via two attention-
based modules working at the object level and the pixel
level, respectively. For the first module, we refer to the
regional proposals, each of which indicates a possible FG
thing, and adjusts the probability of the corresponding re-
gion to be considered as FG things and BG stuff. For the
second module, we take out the FG segmentation mask, and
use it to refine the boundary between FG things and BG
stuff. In the context of deep networks, these two modules,
named the Proposal Attention Module (PAM) and Mask At-
tention Module (MAM), respectively, are implemented as
additional connections across FG and BG branches. Within
MAM, a new layer named RolUpsample is designed to de-
fine an accurate mapping function between pixels in the
fixed-shape FG mask and the corresponding feature map. In
practice, all additional connections go from the FG branch
to the BG branch, mainly due to the observation that FG
segmentation is often more accurate'. Furthermore, BG
stuff, while being refined by FG things, also gives feedback
via gradients. Consequently, both FG and BG segmentation
accuracies are considerably improved.

The overall approach, named Attention-guided Unified
Network (AUNet), can be easily instantiated to various net-
work backbones, and optimized in an end-to-end manner.
We evaluate AUNet in two popular segmentation bench-
marks, namely, the MS-COCO [28] and Cityscapes [8]
datasets, and claim the state-of-the-art performance in
terms of PQ, a standard metric integrating accuracies of
both things and stuff [23]. In addition, the benefits brought
by joint optimization and two attention-based modules are
verified through an extensive ablation study 4.2.

The major contribution of this research is to present a
simple and unified framework for both FG and BG seg-
mentation, which reaches the top performance in MS-
COCO [28] and Cityscapes [8] datasets. Furthermore, this
work also investigate the complementary information deliv-
ered by FG objects and BG contents. While panoptic seg-
mentation serves as a natural scenario of studying this topic,
its application lies in a wider range of visual tasks. Our so-
lution, AUNet, is a preliminary exploration in this field, yet
we look forward to more efforts along this direction.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work. Section 3 elaborates the
proposed AUNet, including two attention-based modules.
After experiments are shown in Section 4, we conclude this
work in Section 5.

'We find the pixel accuracy of things is much higher (6.7% absolute
gap) than that of stuff, when considering instance with the same semantic
as one category, e.g., all individuals are evaluated as person in testing. We
evaluate them on the same MS-COCO semantic evaluation metric.

2. Related Work

Traditional deep learning based scene understanding re-
searches often focused on foreground or background tar-
gets [15,45]. Recently, the rapid progress in object detec-
tion [13, 14, 34] and instance segmentation [9, 15,25, 31]
made it possible to achieve object localization and segmen-
tation at a finer level. Meanwhile, the development of se-
mantic segmentation [5,6,33,45] boosted the performance
of scene parsing. Despite their effectiveness, the separation
of these tasks caused the lack of contextual cues in instance
segmentation as well as the confusion brought by individu-
als in semantic segmentation. To bridge this gap, recently,
researchers proposed a new task named panoptic segmen-
tation [23], which aims at accomplishing both tasks (FG
instance and BG semantic segmentation) simultaneously.

Panoptic Segmentation: In [23], the author gave a bench-
mark of panopic segmentation by combining instance and
semantic segmentation models. Later, a weakly-supervised
method [24] was proposed on top of initialized semantic
results, and an end-to-end approach [11] was designed to
combine both FG and BG cues. However, their performance
is far from the benchmark [23]. Different from them, our
proposed AUNet achieves the top performance in an end-
to-end framework. Furthermore, we also establish the bond
between proposal-based instance and FCN based semantic
segmentation. Most recently works include [22,29,40].

Instance Segmentation: Instance segmentation aims at
discriminating different instances of the same object. There
are mainly two streams of methods to solve this task,
namely, proposal-based methods and segmentation-based
methods. Proposal-based methods, with the help of accu-
rate regional proposals, often achieved higher performance.
Recent examples include MNC [9], FCIS [25], Mask R-
CNN [15] and PANet [31]. Moreover, segmentation-based
methods aggregated pixel-level cues to compose instances
combined with semantic segmentation [2, 26, 32] or depth
ordering [44] results.

Semantic Segmentation: With the development of so-
called encoding-decoding networks such as FCN [33], rapid
progress has been made in semantic segmentation [5,6,45].
In segmentation, capturing contextual information plays a
vital role, for which various approaches were proposed in-
cluding ASPP used in DeepLab [5, 6] for multi-scale con-
texts, Dense ASPP [4 1] for global contexts, and PSPNet [45]
which collected contextual priors. There were also efforts
to use attention modules for spatial feature selection, such
as [12,42,43], which will be detailed discussed next.

Attention-based Modules: Attention-based modules have
been widely applied in visual tasks, including image pro-
cessing, video understanding, and object tracking [7, 19,37,

,47]. In particular, SENet [19] formulated channel-wise
relationships via an attention-and-gating mechanism, non-
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Figure 2. The proposed network structure. We adopt FPN as our backbone and share features with three parallel branches, namely
foreground branch, background branch, and RPN branch. In the training stage, the network is optimized in an end-to-end manner. In
the inference stage, panoptic results are generated by things and stuff results following the method described in Section 3.4. “@” denotes
element-wise sum and the green “®” represents Proposal Attention Module (PAM) or Mask Attention Module (MAM) according to its
position. PAM and MAM model the complementary relation between two branches. Details of PAM and MAM are shown in Figure 3 and
Figure 5. The red and green arrows represent upsample and attention operations, respectively.

local network [37] bridged self-attention for machine trans-
lation [36] to video classification using non-local filters. In
the scope of scene understanding, [42] and [43] aggregated
global contextual information as well as class-dependent
features by channel-attention operations. More recently,
self-attention and channel attention were adopted by [12]
to model long-range contexts in the spatial and channel di-
mensions, respectively. In this work, we establish the rela-
tionship between foreground rhings and background stuff in
panoptic segmentation with a series of coarse-to-fine atten-
tion blocks.

3. Attention-guided Unified Network
3.1. Problem and Baselines

Panoptic segmentation task aims at understanding every-
thing visible in one view, which means each pixel of an im-
age must be assigned a semantic label and an instance ID.
To address this issue, the existing top algorithms [1,23] di-
rectly combined the instance and semantic results from sep-
arate models, such as Mask R-CNN [15] and PSPNet [45].

We formulate the problem of panoptic segmentation as
recognizing and segmenting all FG things and understand-
ing all BG stuff. In this way, we solve the problem from two
aspects, namely foreground branch and background branch
in a unified network (Figure 2). In detail, given an input
image X, our goal is to generate FG things result Y}, and
BG stuff result Yg; simultaneously. Thus, the panoptic re-
sult Yp, can be generated from Y7}, and Yg; directly us-
ing the fusion method in Section 3.4. The performance of

panoptic results is evaluated by panoptic quality (PQ) [23]
as described in Section 4.1. For this purpose, we firstly in-
troduce our unified framework for panoptic segmentation in
this section. Then, key elements in our designed attention-
guided modules are elaborated, including proposal attention
module (PAM) and mask attention module (MAM). Finally,
we give our implementation details.

In this work, we view the method, in which things and
stuff are generated from separate models, as our baseline.
Specifically, the baseline method gives the result of things
Y11 and stuff Ys; from separate models My, and Mg, re-
spectively. And the FG model My, and BG model Mg; are
given the similar backbones (e.g., FPN [27]) for the follow-
ing unified framework.

3.2. Unified Framework

In order to bridge the gap between FG rthings with BG
stuff, we propose the Attention-guided Unified Network
(AUNet). Comparing with the baseline approach, the pro-
posed AUNet fuses two models (M, and Mg;) together
by sharing the same backbone and generates YTy, and Yg;
from parallel branches. As clearly illustrated in Figure 2,
the AUNet is conceptually simple: FPN is adopted as the
backbone to extract discriminative features from different
scales and shared by all the branches.

Different from traditional approaches, which directly
combine results from My, and Mgy, the proposed AUNet
optimizes them using a joint loss function £ (defined in Sec-
tion 3.4) and facilitates both tasks in a unified framework.
In detail, we adopt a proposal-based instance segmentation



module to generate finer masks M in foreground branch.
And for background branch, light heads are designed to
aggregate scene information from shared multi-scale fea-
tures. In this way, the shared backbone is supervised by
FG things and BG stuff simultaneously, which promotes the
connection between two branches in feature space. In order
to build up the bond between FG objects and BG contents
more explicitly, two sources of attention modules are added.
We consider the coarse attention operation between the ¢-th
scale BG feature map with the corresponding RPN feature
map, denoted by .S; and P, respectively. The attention mod-
ule can be formulated as .S; ® P; , where “®” denotes atten-
tion operations, as illustrated in Figure 2. Furthermore, the
finer relationship is established by the attention between the
processed feature map Sp,am and the generated FG segmen-
tation mask P, which can be formulated as Spam ® Proi-
Details will be investigated in the following section.

3.3. Attention-guided Modules

Considering the complementary relationship between
FG things and BG stuff, we introduce features from fore-
ground branch to background branch for more contextual
cues. From another perspective, the attention operation
connecting two branches also establishes a bond between
proposal-based method and FCN-based method segmenta-
tion. To this end, two spatial attention modules are pro-
posed, namely proposal attention module (PAM) and mask
attention module (MAM).

3.3.1 Proposal Attention Module

In classic two-stage detection frameworks, region proposal
network (RPN) [34] is introduced to give predicted binary
class labels (foreground and background) and bounding-
box coordinates. This means RPN features contain rich
background information which can only be obtained from
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Figure 3. The designed proposal attention module (PAM) for com-
plementary relationship establishment. We adopt this block in
each scale of shared features, i.e., W and H” changes in each
scale. Here, “®” denotes spatial element-wise multiplication and
“@” denotes element-wise sum. The green arrows represent oper-
ations in PAM. GAP and GN indicate Global Average Pooling and
Group Normalization [38], respectively.

stuff annotations in background branch. Therefore, we pro-
pose a new approach to establish the complementary rela-
tionship between FG elements and BG contents, called Pro-
posal Attention Module (PAM). As shown in Figure 3, we
utilize contextual cues from RPN branch for attention oper-
ation. Here, we give a detailed formulation for this process.
Given an input feature map P, € RE>*W"xH" from the
i-th scale RPN branch, the FG weighted map M, before
sigmoid activation can be formulated as:

M; = f(o(f(Pi,wi,1)), wiz2) (D

where f(-,-) denotes a convolution function, o represents
the ReLU activation function, M; € RI*W"'xH" meang
the generated FG weighted map, both w; ; € RE»*Crx1x1
and w; 5 € R ¥ indicate convolutional parameters.

To emphasize the background contents, we formulate the
attention weighted map M/ as 1 — sigmoid(M;). Then, the
i-th scale activated feature map S € RC=xW"xH"
presented as:

can be

51{7]' =8, M &S, ; ()

where ® and @ denotes element-wise multiplication and
sum respectively, S; ; means the j-th layer of semantic fea-
ture map S; € RCxW"xH"

Motivated by [19], a simple background reweight func-
tion is designed to downweight useless background layers
after attention operation. We believe it could be improved,
but it is beyond the scope of this work. The reweighted fea-

ture map S € RC=*W"*H" can be generated as:
N; = sigmoid(GN(f(G(S),wi3))) 3)
ik =Sk @ N “)

where G and GN denotes global average pooling and group
norm [38] respectively, N; € R *1*1 means reweighting
operator, w; 3 € REXCsX1x1 represents convolutional pa-
rameter, and S’ ; , indicates the k-th pixel channel in S7,.

Based on the above formulation of PAM, we highlight
the background regions in the shared feature maps via at-
tention operation and background reweight function. It also
facilitates the learning of things in turn by enhancing the
weights of activated foreground regions during backpropa-
gation (see Section 4.2).

3.3.2 Mask Attention Module

With the introduction of contextual cues by PAM, back-
ground branch is encouraged to focus more on the regions of
stuff. However, the predicted coarse areas from RPN branch
lack enough cues for precise BG representations. Unlike
RPN features, the m x m fixed-shape masks generated from
foreground branch encode finer FG layouts. Thus, we pro-
pose Mask Attention Module (MAM) to further model the



relationship, as illustrated in Figure 5. Consequently, the
1 x W' x H' shape FG segmentation mask is needed for
similar attention operations as before. Now, the problem is:
how to reproduce the W’ x H’ shape FG feature map from
m X m masks?

RolUpsample: In order to solve the size mismatching
problem, we propose a new differentiable layer called
RolUpsample. Specifically, RolUpsample is designed sim-
ilar to the inverse process of RolAlign [15], as clearly illus-
trated in Figure 4. In the RolUpsample layer, the m x m
mask (m equals to 14 or 28 in Mask R-CNN) is firstly
reshaped to the same size of Rols (generated from RPN).
Then we utilize the designed inverse bilinear interpolation
to compute values of the output features at four regularly
sampled locations (same with RolAlign) in each mask bin,
and then sum up the final results as the generated mask fea-
ture map. To meet the requirement of bilinear interpola-
tion [21], in which near points are given more contributions,
an operation for inverse bilinear interpolation is formulated:

1—z,)(1-yp
R(p11) = ﬁ (bg)
1 D p
R(p12) = e, satis: B(p) )
R(p2,1) = %(17% R(pg)
5 value, X value,
R(p2,2) = me22—R(py)

value, X value,

where R(p; ;) denotes the result of point p; 5, after inverse
bilinear interpolation, R(p,) here equals to one quarter of
the corresponding value in the input mask, and normalized
weights value,, value, are defined as:

value, = xf, +(1- :rp)2 ,value, = yﬁ +(1- yp)2 (6)

in which z,, and y,, indicate the distance between grid point
Py and generated p1 ;1 in two axes respectively, as presented
in Figure 4(b). Note that with the Equation 5 and 6, the m x
m mask can also be reverted from the generated W’ x H’
feature map with the forward bilinear interpolation.

Then, the generated feature map is assigned to four dif-
ferent scales according to the size of Rols, which is similar
with that in FPN [27]. Consequently, the generated FG fea-
ture map is achieved for the following operations.
Attention Operation: Different from traditional instance
segmentation tasks, the predicted FG masks are utilized to
give background branch more contextual guidance in pixel-
level. We firstly aggregate them together to the C,,, x W' x
H' feature map using RolUpsample, as presented in Fig-
ure 5. Then, the finer 1 x W' x H' activated BG regions
can be produced, similar with that in PAM. With the intro-
duction of attention, the FG masks is also supervised by se-
mantic loss function, which enables a further improvement
in scene understanding (both for things and stuff), as dis-
cussed in Section 4.2. A similar background reweight func-
tion is adopted to aggregate useful highlighted background
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Figure 4. Comparison between RolAlign [15] and our proposed
RolUpsample. The designed RolUpsample, which can be viewed
as an inverse operation of RolAlign, reverts the feature map from
FG masks according to their accurate spatial locations. Here, we
show an example of RolAlign output and RolUpsample input with
m = 2 for an intuitive illustration.
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features. Consequently, we model the complementary rela-
tionship between FG things and BG stuff with the proposed
PAM and MAM.

3.4. Implementation Details

In this section, we give more implementation details on
the training and inference stage of our proposed AUNet.
Training: As well elaborated in Section 3.2, all of our pro-
posed methods are trained in a unified framework. The
whole network is optimized via a joint loss function £ dur-
ing training stage:

L = LrpN + A2LronN + AsLiask + AaLgeg  (7)



where LrpN, LRCNN, LMask » and Lgeg denotes the loss
function of RPN, RCNN, instance segmentation, and se-
mantic segmentation, respectively. Specifically, hyperpa-
rameters are designed to balance training processes, where
A1 to Ay are set to {1, 1, 1, 0.3} for MS-COCO and {1,
0.75, 1, 1} for Cityscapes.

In details, we adopt ResNet-FPN [17,27] as our back-
bone. And the hyperparameters in the foreground branch
are set following Mask R-CNN [15]. The backbone is pre-
trained on ImageNet [35], and the remaining parameters are
initialized following [16]. As standard practice [10, 17,27],
8 GPUs are used to train all the models. Each mini-batch
has 2 images per GPU for ResNet-50 and ResNet-101 based
networks and 1 image per GPU for the others. The net-
works are optimized for several epochs (18 for MS-COCO
and 100 for Cityscapes) using mini-batch stochastic gradi-
ent descent (SGD) with a weight decay of 4e-5 and a mo-
mentum of 0.9. Batch Normalization [20] in the backbone
is fixed and Group Normalization [38] is added to all of
the branches in our final results. For MS-COCO [28], the
learning rate is initialized with 0.02 for the first 13 epochs
and divided by 10 at 15-th and 18-th epoch respectively. In-
put images are horizontally flipped and reshaped to the scale
with a 600 pixels short edge during training. Multi-scale
testing is adopted for final results 4.3. For Cityscapes [£],
the learning rate is initialized with 0.01 and divided by 10 at
68-th and 88-th epoch respectively. We construct each mini-
batch for training from 16 random 512x 1024 image crops
(2 crops per GPU) after randomly flipping and scaling each
image by 0.5 to 2.0x. Multi-scale testing is dropped in 4.3.

Inference: The panoptic results are produced in inference
stage by fusing the results of FG things and BG stuff in a
similar way with that in [23]. In this stage, the overlaps of
things are first resolved in a NMS-like procedure which pre-
dicts the segments with higher confidence scores. And the
relationships among categories are also considered during
this procedure. For example, fies should not be overlapped
by person in the final result. Then, the non-overlapping in-
stance segments are combined with stuff results by assign-
ing instance label first in favor of the things.

4. Experiments

In this section, our approach is evaluated on Microsoft
COCO [28] and Cityscapes [8] datasets. We first give de-
scription of the datasets as well as the evaluation metrics.
Then we evaluate our method and give detailed analyses.
Comparison with the state-of-the-art methods in panoptic
segmentation are presented at last.

4.1. Dataset and Metrics

Dataset: Due to the novelty of panoptic task itself, there
are few datasets with detailed panoptic annotations as well

as public evaluation metrics. Microsoft COCO [28] is the
most suitable and challenging one for the new panoptic seg-
mentation task, for the detailed annotations and high data
complexity. It consists of 115k images for training and 5k
images for validation, as well as 20k images for fest-dev
and 20k images for test-challenge. MS-COCO panoptic
annotations includes 80 rhing categories and 53 stuff cat-
egories. We train our models on train set with no extra data
and reports results on val set and test-dev set for compari-
son. Cityscapes [8] dataset is adopted to further illustrate
the effectiveness of the proposed method. In detail, it con-
tains 2975 images for training, 500 images for validation
and 1525 images for testing with fine annotations. It has
another 20k coarse annotations for training, which are not
used in our experiment. We report our results on val set
with 19 semantic label and 8 annotated instance categories.

Evaluation Metrics: We adopt the evaluation metrics in-
troduced by [23], which computes panoptic quality (PQ)
metric for evaluation. PQ can be explained as the multi-
plication of a segmentation quality (SQ) and a recognition
quality (RQ) term:

_ Z(p,g)eTP LoU (p, 9) |TP|

PQ X
|TP| ITP|+ 1 |FP|+ L|FN|

(®)

segmentation quality(SQ) recognition quality (RQ)

where IoU(p, g) means the intersection-over-union be-
tween predicted object p and ground truth g, true positives
(T P) denotes matched pairs of segments (IoU(p, g) > 0.5),
false positives (F'P) represents unmatched predicted seg-
ments, and false negatives (F'N) means unmatched ground
truth segments. PQ, SQ, and RQ of both thing and stuff are
also reported in our results.

4.2. Component-wise Analysis and Diagnosis

In this section, we will decompose our approach step-
by-step to reveal the effect of each component. All ex-
periments in this section are trained and evaluated on MS-
COCO dataset in a single model with no extra data. Here,
we adopt ResNet-50-FPN as our backbone. For fair com-
parison, we strictly follow the merging method in [23] with
no trick or multi-scale data augmentation in training and
inference stage when doing component-wise analyses. As
presented in Table 1, our proposed AUNet achieve an ab-
solute improvement of 2.4% in PQ when compared with
separate training method.

4.2.1 Unified Framework

As elaborated in Section 3.2, our proposed unified frame-
work deals with FG things and BG stuff in parallel branches.
As shown in Table 1, the unified framework boosts up the
performance both in PQS* and PQ™, which brings 1.1%
absolute improvements in PQ. This can be attributed to the



Table 1. Comparison among different settings of panoptic quality
(%) on the MS-COCO dataset. “rewt” means using background
reweight function in PAM and MAM. PQ™™ and PQ®! indicates
PQ for things and stuff respectively.

Method PAM MAM rewt PQ PQ™ PQSt AP mloU

sep X X X 372 471 228 334 445
e2e X X X 383 479 239 337 448
PAM v X X 39 485 245 342 451
PAM, v X v 394 489 252 344 453
MAM X v X 389 486 242 343 452
MAM, X v v 392 486 249 343 453
AUNet v v v 396 491 252 347 451

shared backbone and joint optimization, with which the net-
work is supervised to focus on more discriminative features
for both things and stuff. With the shared backbone, the mis-
classification in stuff are effectively reduced and the things
are given more details.

4.2.2 Proposal Attention Module

The proposed PAM builds the complementary relationship
between things and stuff from different scales. By this
way, the binary-classified RPN branch is optimized under
the supervision of semantic labels. With the bond between
stuff and things established, the network performs consis-
tent gain in PQS* and PQ™™, as presented in Table 1. The
background reweight function proves its effectiveness in
PQSt. This can be resulted from the global contextual fea-
tures introduced by global average pooling in Equation 3,
which means it chooses to aggregate highlighted BG fea-
tures under the guidance of global context. As shown in
Figure 6, the activated feature map M) emphasize the back-
ground areas with context cues. It is worth noting that we
have tried other fusion methods for FG and BG feature fu-
sion, such as concatenation and direct summary after fea-
ture transformation. But these strategies have minor contri-
butions, which means the attention is more appropriate for
relationship establishment.

4.2.3 Mask Attention Module

While the PAM establishes the bond between FG objects
and BG contents, the MAM gives background finer repre-
sentations, as elaborated in Section 3.3.2 and Figure 6. As
that in PAM, MAM also achieves better performance over
the raw method in both PQ5! and PQ™™. However, the con-
tribution of MAM is slightly lower than PAM. We guess
this is caused by the lack of contextual cues in the gener-
ated FG segmentation mask.” In fact, we also evaluate the
performance when adopting different resolution masks for
RolUpsample, namely the 14 x 14 mask and the 28 x 28

2We adopt zero padding for vacant areas in RolUpsample layer, result-
ing in blank BG context. This needs to be investigated in the future works.

Activated Mask Input Image
in PAM (4th scale) put Imag

Activated Mask
in MAM

Figure 6. Heatmaps of the activated BG areas in PAM (the 4th
scale, M4) and MAM. The red regions are assigned more weights
while the blue regions less weights in the background branch. All
the input images are sampled from the MS-COCO val set.

one. The result shows the high resolution mask features
bring a further gain (0.1% absolute improvement in PQ)
over the smaller one. This is reasonable, because RolUp-
sample layer generates finer layouts if given higher resolu-
tion masks. With the help of background reweight function,
MAM, achieves 39.2% in PQ.

4.3. Comparison to State-of-the-arts

We compare our proposed network with other state-
of-the-art methods on MS-COCO [28] test-dev and
Cityscapes [8] val set.

MS-COCO: As shown in Table 2, the proposed AUNet
achieves the leading PQ performance 46.5% in MS-COCO
dataset without bells-and-whistles. In details, winners of
COCO2018 panoptic challenge [!] adopt numerous addi-
tional network enhancements during training and inference
stage, e.g., abundant extra data (110k external annotated
MS-COCO images), multi-scale training, model ensemble.
Moreover, considering the network enhancements adopted
by the winner teams, cascade R-CNN [4] is adopted for
things and extra blocks or label bank [18] are added for
stuff as well. Different from them, the proposed AUNet
achieves the top performance in a unified framework with
no extra data or additional network enhancements for both
things and stuff. To be more specific, only one single model
based on the ResNeXt-152-FPN? is adopted in the AUNet.

Filtering out the improvement bring by model ensem-
ble, we compare the AUNet with “PKU_360” team who
adopted a similar backbone but with additional skills. The
result shows that our algorithm perform better than them
especially in PQSY, for about 4.9% absolute improvements.
Furthermore, the AUNet overpasses the former end-to-end
method, namely JSIS-Net [1 1], with a 19.3% absolute gap,
which proves the effectiveness of the proposed method. In
Table 2, it is clear that the AUNet have a great balance be-

3We use the 64 x 4d variant of ResNeXt [39] with deformable conv [10]
and non-local blocks [37].



Table 2. Panoptic quality (%) on MS-COCO 2018 test-dev. “‘extra data” here denotes using extra dataset for training, “e2e” represents using
a unified framework for things and stuff prediction, and “enhancery” and “enhances;” indicates using additional enhancement techniques
in network heads for things and stuff respectively. PQ™® and PQ5* means PQ result for things and stuff respectively. We report our single

model results with no extra data or network enhancement.

Method backbone extradata e2e enhancer, enhancegy PQ SQ RQ PQ™ SQ™ RQ™ PpQSt sQSt RQS
Megvii (Face++) ensemble model v X v v 532 832 629 622 85.5 72.5 39.5 797 485
Caribbean ensemble model X X v 4 46.8 80.5 57.1 543 81.8 659 355 785 438
PKU_360 ResNeXt-152-FPN X X v v 463 79.6 56.1 58.6 83.7 69.6 276 73.6 356
JSIS-Net [11] ResNet-50 X v X X 272 719 359 296 71.6 39.4 234 723 30.6
Ours ResNet-101-FPN X v X X 452 80.6 547 544 83.3 64.8 313 76,6 394
Ours ResNet-152-FPN X v X X 455 80.8 550 547 834 652 316 769 39.7
Ours ResNeXt-152-FPN X v X X 46.5 81.0 56.1 55.8 83.7 663 325 77.0 40.7

Table 3. Panoptic quality (%) on the Cityscapes val set. PQ™
and PQ5* denotes PQ result for things and stuff respectively. We
compare our results with the bottom-up methods (the first row).
Ourscqu indicates all things are considered as one category in the
background branch during training.

Method backbone PQ PQ™ PQSt AP mloU
DWT [3] VGG16 - - - 21.2

SGN [30] VGG16 - - 29.2

Liet. al. [24] ResNet-101 538 425 62.1 286

Mask R-CNN [15] ResNet-50 - - - 31.5
Oursq, ResNet-50-FPN ~ 55.0 512 578 322 -
Ours ResNet-50-FPN 564 527  59.0 33.6 73.6
Ours ResNet-101-FPN  59.0 548 62.1 344 75.6

tween things and stuff, even when comparing with the chal-
lenge winners (no extra data). This is due to the introduc-
tion of unified framework and attention-guided modules for
complementary relationship establishment, as well elabo-
rated in Section 4.2. Figure 7 gives intuitive presentations
of the top performance using our proposed AUNet.

Cityscapes: We compare our proposed method with the
leading bottom-up methods and Mask R-CNN in Table 3.
Firstly, we adopt the same training strategy with that in MS-
COCO, which means all things are considered as one cate-
gory in background branch, denoted as Ours.q,. However,
the strategy is inferior to that when using all 19 semantic
labels, as illustrated in Table 3. Additionally, the MAM,
which is proved to decrease the PQ in Cityscapes, is dis-
abled in the final results. We guess the decline is caused by
the inconsistency with prior information 1, which means the
relatively worse things prediction may give wrong cues to
stuff. Overall, the proposed method surpass previous state-
of-the-art [24], with a 5.2% absolute gap.

5. Conclusions

This paper presents AUNet, a unified framework for
panoptic segmentation. The key difference from prior ap-
proaches lies in that we unify FG (instance-level) and BG
(semantic-level) segmentation into one model, so that the
FG branch, often being better optimized, can assist the BG

(a) Inputimage (b) Ground truth

Figure 7. Example results of AUNet on the MS-COCO val set.
Our performance on things 7(c) is even better than human anno-
tations 7(b). The things of the same class share the same color
family but appear in different intensities.

(c) Our results

branch via two sources of attention (i.e., proposal attention
module and mask attention module), which offer object-
level and pixel-level guidance, respectively. In experiments,
we observe consistent accuracy gain in MS-COCO, based
on which new state-of-the-arts are achieved.

Our research delivers an important message: in visual
tasks, it is often beneficial to partition targets into a few
subclasses according to their properties, so that complemen-
tary information can be propagated across subclasses to as-
sist scene understanding. Panoptic segmentation, being a
new task, offers a natural partition between FG things and
BG stuff, yet more possibilities remain unexplored and to
be studied in the future.
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FS oA R E I R, X AT DU HEIX P AN 73 SCEERAIE
[ ER:. AT EHE IR RN R ST RS
IR, FATIGIN T R ASE R B B . RATHE &
550 N SURHIE L S AR R RPN RFAE B 22 8] A
WERRAE, S M Py R il 20, “®”
FoREREAE, AT T URRN S; @ P, it
Ab, BRI C R ReE I A PRI Spam FICAE
FRTHT S5 BN P B5E, T LARIR N Spam ® Proio

VEEREAE N I 0 AT HR T
3.3 ER SRR

ZREBAIREF WY BN ER R, &
MIBINT AT & 2 L 20K %2 LHIRHE, DR EZ
M EFCEE . WA — MRS, EEHRA S HE
REERERE TR FEUUNEMET FCN Jiksr#Elz
AR R . ik, $EH T AN R OGRS, B EESOR
R (PAM) ARG (MAM).

3.3.1 BB FERER

FEL ) A IRE S, SIN T ki X 48k X 2%
(RPN) [32] Sk H T i — 3 hI2RAR%E (AT SAIS 55
AL FAHEAR R . X FEWRAE RPN W& FEEK

b = 2
H E:%u

AR R HBENT S0 SO IERRAS . BRIk, FAT3R
A S SR A A A AR SR R R

T3k, MROARIESERSE (PAMD. WE3HR, RATH
FIRE RPN 731 BN SCR R AT B Rl X,

CoxW"xH"

RPN branch Pi
Conv axa
)
L

Convaxg RelU

Pi

CoxW"xH" !

.onv 1x1
4
M'; ‘2-Sigmoid 1xW"xH"
Background branch | s,
roposal Attention
Convixz

B 3. ST R T RO FO R B (PAM). Ffi]
TG SE S (0 R R, b W R B ZERA
REFHEEE. EXE, “” TRt ERs, “o” &
TRICENE. GEF A PAM FHHE(E. GPA F1 GN 4
IR AR E RIS LA — L [36].

CoxW"xH"

S

(J

Background Reweight

Convaxg
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WAL H T — VR A R IX AR, B ek B
i XK RPN 4324 NAFIEE] Py € RO W/ xH",
1E sigmoid Z ATIURT SIS M, 1T LR A

M; = f(o(f(Pi,win)), wi2) (1)

Hob f() FRBBEE, o 2R ReLU W% M,
M; € ROW"H" R i) FG AL, w,, €
RC;XC,,,XIXI Fl Wiy € RGCi.xlxl %B%%%%E%eﬁo
NTREBFRNE, FATKES IS M) #oR
1 —sigmoid(M;). RJE, i MNREEBEEFE B
S/ € ROCW!xH" T[L) RN,

Sll-’j =05 ® M ® Sij (2)

Hob @ fl @ HHFRFEE SARENGERRM, 5, &
TR R SURIERRET 5, € RO-XWxH"

% 18] IR R, e A T IR B
TEVE BB 5 I TR RO B2 . BN o T LA
U, ERGHEE ELE A T AR LISk . TR AT
S € ROXW/xH" [l 275y

N; = sigmoid(GN(f(G(S;), wi3))) 3)

Sk =5Sir®N; (4)

Hif G I ON 4 HIFoR 4 R LR RIS — 1k [36),
N; € ROXIX1 FoR BT, w; 5 € RO-XCox1x1
TEMBH, S, TR S W b MEREIE,
ST Fik PAM 2R, Fofi 50 i B Ay S
PIVKL R B 7R 7 S S A W e K B B
S5 3 1A 4 990 4 7 S T 5 DX SRR
AT F A 2] (B 427,

3.3.2 WREXEER

BEE PAM B RIIGIN, B 50 3CREE NE ik
THRIX . ST, SKRE RPN 3 SCHH X Sk = 2
R TR R &R 5 RPN FFEAR, mxm
I8 5 P2 AR RS R A5t 20 SO A Ry 2R e Ak, 3k
AT A At (MAMD SEiE—D @ KR, W
BIsFR . AL, 5 Z AT RAAMIE RIRAE R 2 1x W' x H'
TEARRIHT 0 B, DUAE R A2 T m x m
EREIL W x H' TRIRET ALK ?



RolUpsample: Jy | fif th S5 ANULHED A f7, AT
Y —M4AN RolUpsample W X4y 2. BART S,
RolUpsample 5 RIATIAlign [ #2 [13] AHL, 1
K4FT7~ . 1E RolUpsample =4, m x m B (m T
FEAE R-CNN (1) 14 87 28) ¥ il HHT B A M I K
/N Rols (H RPN A0« SRIGFRATHRIF B (1 e 3L
LA EOR T RN BT P A R AL B (5
RolAlign R H% RIS, RJE R RA S RES
13 2L B AR ASRAIE B O Tl R R MR AE [20] 1)
BOR, IR 5 TEZ TR, RO A 5
LI

R(p11) = % (Pg)
R(p1,2) = % (Pg) (5)
R(p2,1) = mfﬁ‘;fﬁ (Pg)
R(p22) = \mh,;f% (pg)

Hrh R(pjr) Bl IOWEMAGHE G M AL pjp B4,
S WAL R(py) 5 TH NHFERS H AR RAE A VY 4y 2 —
H—WHBE value,, value, & X N:

+(1—y,)* (6)

Hop xy, Ay, 5AFRIR AL py FAER) p1a Z 1801 1H]
B, E4(b) iR, FER, X HFESM6, m x m fEfR
AT DUE i A 1) R VEARAE A ) W x HY R fER
SRR

SRIE, MR Rol K /INHKEAE B RFAIE WS 43 B 25
PUASARRERRE, X5 FPN [26] 25L. Rk, ARk
FG FFE BT LU R 1E.
FERE: 5RRMER S EUESAE, WK FG
MR TEBRRR LA S RBEZH LT
k2%, FATE S ME H RolUpsample K Al 411 — 2 il £
Cpo x W' x H' FREEH, WEsHR. K5, BT
PAM, AJLAERR 1 x W' x H' BE 1 = IX 8. @it
SINTER, A SeHEE s R B B, en DAt —
LR R A CREEHAAE), W42V k.
TATRHA T — AR S IR EOR & A -
Bebrit 15 SRFIE. Rk, FRATH$EH I PAM A1 MAM

ﬁ/‘?’\
BT BT F AN A B EAN R R

3.4, SIS

FEART, FATH AL AUNet FIVIZRAIHERRBY B
5 22 S 1Y

_ .2
, value, =y,

value, = xﬁ +(1- x,,)Q
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RolAlign

Grid points of bilinear output

interpolation

ariable size Rol

Conv feature map

(a) RolIAlign process

RolUpsample
output

mxm mask

Generated mask feature map

(b) RolUpsample process
Kl 4. RolAlign [13] F1FEAIH2 Hi 1) RolUpsample HILLHER . &
fiT8E1 9 RolUpsample, ] LABEE fE—F RolAlign f3%
{f, AR BT TG R 22 ) G B ST AP . IO, TR

IR T —4 m = 2 i) RolAlign #itl, RolUpsample %A\
I 1
(" oitprampleFestre ) G
|‘ RoIUpsamylzi 2 i >@4 Proi
y
mmmmmmm \\777777777/‘ i o
.gm oid LW xH' &

Mask Attention

Background Reweight

Smam

Bl 5. ﬁ%fﬂﬁ*ﬁéﬁiﬂ"]%?\kﬁﬁﬁE‘Jiﬁﬂﬁ?‘%?fﬁﬁ%c X
B, “@” oRBWILERRE, “©” Formrinik. 4ams
EE R AR MAM PR FERIERIE. GAP f1 GN 1)
& SCF PAM HAHTE .

ke W32 ik, AR KT A E — 14t
ISR AT U SR, A MR IR IS R R £
FENZRR BetAT AL -

L =MLrpN + A2LRONN + A3LMask + AaLseg  (7)

HH Lrpny Lronns Laask M Lseg 73378 RPN,
RCNN, 461 43 FFIE S 53 5 B9 2% s 4. BART &, #
SR TP AT GRE R, o Ay 2 Ay #EXT MS-
COCO FntEWE N {1, 1, 1, 0.3}, %1% Cityscapes



HIEERERN {1,075, 1, 1}.

VEHT 5, BATF ResNet-FPN [15,26] 1E N
WATMAESE . BT 5 70 SCh I S 402 % 2] Mask R-
CNN [13] & E M. HELTE TmageNet [33] LTI %,
HGMS 802 14] #7818, 8 A~ GPU 1E s
#EZR>] [8,15,26) F T IIZRBT A REAL. fERA/NLES,
£ 2 NIET ResNet-50 Fil ResNet-101 * 2% [ B 1% #F
- GPU, HAbMZEEA GPU f7 1 MEIR. 1A
(10 I 28 e FH /INAIE B BE AL BE R PR35 (SGD), HAUE 3
WA de-5, BEN 0.9, MLLEL RGPk TR
1k (MS-COCO N 18, Cityscapes N 100). HTHHK
LRI —1E [19] £ ER, 316 [36] PrasmEER
MR AEERFRFE 53X F. T MS-COCO %
£ [27], ZEFAENT 13 MG IAYIEA 0.02, IF
HAAAESS 15 A 18 I ZR A 5 FEAIC 10 fi%. 7E
IZRIAIE], N B K ST e A0 B 98 910Kl 600
AMEFR SIITT T X I fe 2845 TR 22 XA 4.3 0 %
T Cityscapes ##5% (6], %1% W14h4A 0.01, If
HArAAES 68 AN 88 YIIZR A 5 FEAIC 10 fi%. 3K
TR 16 PNBENL 512x1024 BGHET (A
GPU #8Y 2 ) #7115, BEHLENE: K R 46
0.5 £ 2.0 f5. 2 XIIMATEL. 3P
I LS 21) R B ST R F Y
SOMAE R, EHEN B A e RS R EXAH
B, FMES Y LEREIT NMS 15 72 bl
e, XL EI TR AR A ERE . R R a%
JERRNZ KR B, ER&ERp, BANIZY
ANWESZ. )5, B EkS LIRS UX 54,
KR E S I FIF M A RS

4. LI

TEATN 1, AT J77ETE Microsoft COCO [27)
Cityscapes $#i4E [6] FREATVEAG . FATE e/ A
UL RVEAL TR bR . SR JE TAVPEALIRAT I J7 5 1 45
s, G T 5 aEIh R ITER T

.
4.1. B REAR

WHEE: T 2RUES ARG IEaE, ROHHHEER
BRI 4 SR AN LV FR bR o X T TR VR
I = 2 2%, Microsoft COCO [27] $diE 8 /& i
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EAMEEPEER . B TUIZM 115k KKK
A TEUER 5k 5KEMER, LT test-dev [ 20k K
EUEFF T test-challenge 1] 20k 5K & . MS-COCO
SRR 80 AN F AN 53 ARG FRATTHE
train BHEE PIIGIRATREL, BAINIEEE,
FLEL val BEAN test-dev SIS R . K Cityscapes [6]
BRI N T B U T A A R . VR,
BAE 2975 K TSI EE, 500 5K T56E R E
GATH T8 A sy Bt AT A 1525 5Kk R . Bk
A 20k FRAT R AR RE G TSR, (HIEFRATTI SE
WA EAT. FAVEH 19 N5 LFRZEFT 8 AN
TR S5 FRATTE val £ L4
WEiERR: BATRA [21] 5INKIEAE TR bR, ZI8hrit 5
Ta&%hE (PQ). PQ WLMER N4 ¥R E (SQ) Wi
AR AR E (RQ) Tif3RI%:

Z(pyg)eTP LoU (p, 9)
TP

ITP|

PQ =
7P|+ L|FP|+ L FN|

(8)

segmentation quality(SQ) recognition quality (RQ)

H ToU(p,g) RRBEAL A1) H A5 & O AR K A5
WHEOMRZZR, HIE (TP) FonULE IE# 1 5 E
(IoU(p,g) > 0.5), RIE (FP) F7x A UL 350 43
#, [R5 (FP) R i o 61 i IEREA . AT
gE R T EHMMAT PQ, SQ A RQ.

4.2. 7 BRI

FEAATH, TAVGIZL R AT T, DR
ANEAFIER . AT I I SEER#AE MSCOCO %t
AL EHAT NG APEAS, JF B A BN EE . i
B, BAMIRHA ResNet-50-FPN {ENERATHIAESE. N T
NP, ARG [21) AT, T

a7 P | EZ i S SR T E N
PN, R 1R, SEAMPNZGEME, FRA15E
Hi) AUNet SEIL T 2.4% 1) PQ 3

4.2.1 H—iEZ

BT 3271 BT AR (IS RE,  FRATTER Hh (48— HE 42
FEFFATIN 7y S AL TR St F A S 4. IR 1R,
gi—HEZE4R = 7 PQSt M1 PQT ftkRE, N PQ ik
1.1% Wodt . X nr DUHEE T3 AR QLB & ik,
28 0l WBAE L 8 L VR T S A A AR B AR . i



% 1. Comparison among different settings of panoptic qual-
ity (%) on the MS-COCO dataset.
background reweight function in PAM and MAM. PQ™
and PQ* indicates PQ for things and stuff respectively.

“rewt” means using

Method PAM MAM rewt PQ PQTr  PQSt AP mloU
sep X X X 37.2 47.1 22.8 33.4 44.5
c2e X X X 38.3 47.9 23.9  33.7 44.8
PAM v X X 39 48.5 24.5 34.2 45.1
PAM, v X v 39.4 48.9 25.2 34.4 45.3
MAM X v X 38.9 48.6 24.2 34.3 45.2
MAM, X v v 39.2 48.6 24.9 34.3 45.3
AUNet v v v 39.6 49.1 25.2 34.7 45.1

SLEHESE, W] DU ROt D X A R AR 2, PN E
LSRR R

4.2.2 BEIGEEHRER

S PAM ZE57 7 ANF RUEE % 4 Al At 4 2 [6]
MIEANC R, WX AT, 2 H1 72K RPN 7304
XA E TR 8IS F AR ]
MR, MZE PQSt Al PQTR Hskfd T FEE: kAL,
WRIPUR. B EMBRBOEY T e PQY HIA
itk XARER B AN 3t e R ESI A2/ ET
SCRHIEIE AR, X EWE EERFAERR LT XNES
TrREEHSRHE. WA R, BoE AL My iR
TEA B P XERRE X E. EATEERRE, &

ﬁ /?'\
Oz 20 AR A IHE M THT SN R R IER S,
191 U Re I B 40 R JROBCRT EL RV L o HLIX LS B (1 T

BRARZDN, XERETE R EE SR KR,

4.2.3 BIRKFELR

AR PAM ST T AT SO0 55 1 5 N 28 2 T8 R I
A, H MAM & H TR RR, W5 3.3.2 45/
Kl 6fTid. £ PAM 1, MAM 7£ PQS* fI PQ™
WL R T A Bt RE. (H2&, MAM [f&0R
Wi T PAM. FRATTHE X 2 T AR I A 55 40 B
B> bR TR R . 25 BR b, RATIE VR AL
7 RolUpsample 7EREA[F] 73 Hr R HEALIS 11 B, R
14 x 14 HEAEA 28 x 28 M. 45 REW] &0 PR
RFAE LUAR 2 FEHE SRR AE 1 Ok 7 AP a5 (PQ #2&
0.1%). IXREFRM, RN w5 w0 PR R,

2FA% RolUpsample FEH 172 A XIERATHR, BT HER
BRI A X E T A AR AT SR .

db =
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in PAM (4th scale) Input Image

Activated Mask  Activated Mask
in MAM

db 5.

6. PAM H i 5 X3k i #ig B (B8 DU/ R, M) A MAM.
FHORP, AT E, W X
B/RE, FramAmEE#RFRE MS-COCO 1 val 4.

B

AL
I

(t
¥

+

~

I
\

ab =

RolUpsample 24 MMM E . E1 5
BRI, MAM, 7£ PQ 5% 39.2%.

FHAIAL

4.3. 5IABORE

BATHERATIR B L FE MS-COCO [27] 1 test-
dev BHEEAR Cityscapes [6] 1 val FHHE b5 HAh
Sk i 5T H A
MS-COCO: 1% 2fr7x, & H R & sk T g i
AUNet £ MS-COCO ##i S s 3l 146.5% 1415k
PERE. VE4IHLYE, COCO2018 4 HtHkik Ikt [16]
FENGRAHERE R BCR T VR 2 05 R 28 3 5, 45l
F &AM R (110k kAMEERER MS-COCO
B, ZREZ, BAER. i, HREEkME
AR FH (1 9 25 450 Th E, 208k R-CNN [?] ¥ T F4
WA, BAMOHREARZEE [17) Bd . 5ENAR
st $EHE AUNet 48— AESL s Bl 1 i)
PERE, WA BAMOEIEEE X T F 4 F A A AN
i, BEARKE, AUNet FAUACKH T —AN&T
ResNeXt-152-FPN? fi 8 —f#i 7] ,

o PE AR R AR B SR B 28, AT AUNet 5
“PKU 360" HIPAHEAT T B, MRATTRA T 2L AE
BERAHIMOTIRE. SRR, EAMEILRIR
TEA], R PQSE o, 40k 4.9%. Ik
4b, AUNet #8881 LA 030 256 7772, B JSIS-Net [9],
HAE19.3% HI4ant s, WEH Tz ma ok, 18
# 2, REASE. AUNet 76 1R F 4 FA+ A2 [0 R 4T
(P, BRAEE S HREGRIE S (BaBUANIEE) T

STRAEH 1T BT F 4 (8] FIAEAHLIX HL [35]) 1) 64 x 4d &
B [7].




# 2. £ MS-COCO 2018 test-dev AT IR (%). X5 “BOMEE " FoxEIIZrb AN RS, “e2e” TR N F AN
A HAE S5 —HESE, “enhancers” Ml “enhances” 7 HIZRTEMZ PN F AR AR T HARBEE A . PQ™ Fl PQS*
DANFIRF A HE PQ SR . TATHI M 44 % A A4 Ecd ol oy 24 38 o

Method backbone extra data e2e enhancery, enhances, PQ SQ RQ PQ™ sQ™ RQ™ PQSt SQ%t RQSt
Megvii (Face++) ensemble model v X v v 53.2  83.2 629 62.2 85.5 72.5 39.5 79.7 485
Caribbean ensemble model X X v v 46.8 80.5 57.1 54.3 81.8 65.9 35.5 78.5 43.8
PKU_ 360 ResNeXt-152-FPN X X v "4 46.3 79.6 56.1 58.6 83.7 69.6 27.6 73.6 35.6
JSIS-Net [9] ResNet-50 X v X X 27.2 71.9 359 29.6 71.6 39.4 23.4 72.3 30.6
Ours ResNet-101-FPN X v X X 45.2 80.6  54.7 54.4 83.3 64.8 31.3 76.6 39.4
Ours ResNet-152-FPN X v X X 45.5 80.8  55.0 54.7 83.4 65.2 31.6 76.9 39.7
Ours ResNeXt-152-FPN X v X X 46.5 81.0 56.1 55.8 83.7 66.3 32.5 77.0 40.7

# 3. fE Cityscapes val E£F LT E (%). PQ™ M1 PQ®
SRR F AR A PQ 450 BATE RS HIR A Lk G

—HE) BT T HEL BATH cqu RUIPTE F UL AET R
DR,
Method backbone PQ PQ™ PQSt AP mloU
DWT [2] VGG16 - 21.2
SGN [?] VGG16 - - - 29.2
Li et. al. [23] ResNet-101 53.8 42.5 62.1  28.6
Mask R-CNN [13] ResNet-50 31.5
Ourscqu ResNet-50-FPN 55.0 51.2 57.8 32.2 -
Ours ResNet-50-FPN  56.4 52.7 59.0  33.6 73.6
Ours ResNet-101-FPN  59.0 54.8 62.1 34.4 75.6

B2 unth. Xl T o ERR B AFER G
BEHR S, T HANR R, 3 4.2 X et AT 7R E R .
TEE T AR A AUNet 182 4R B
MHETR o

Cityscapes: FATKIRATIE H 77580581 B R
R 3 Mask R-CNN A7 B 5k, Al
7 FIFE MS-COCO 4l & AH A I 2R 5w, 31X
EWENHNENEYS Ry XPHEEE-—1K, £
RN Ourseqyo PR, XFPHIE AW A 19 MG
NFRZET ARG, WK 3F~. Ak, MAM (BFiEH] 2
PR Cityscapes F111) PQ) TR B2 . A
INAX PR RE T 2 T BA—E S8/, XEK
F R R IR A IO T R 2 45 A IO 2 (LA 1R R R o
SRS, PRt Ikl 7 enr iR 23],
“Aaxt 228N 5.2% .

5. 518

AT AUNet, —PMGE— &R AEIHER. 5
SERTER B XA T AR AT R (SEBIZ0 s

GEXZD nEG— 21— MERME, RBLETR S Gl
BOELF AL REBIE PR SR (R il

A S

' He
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(a) Input image (b) Ground truth

(c¢) Our results
Kl 7. AUNet 1E MS-COCO val % LsEflgE R 4
PIRIRIEE BT N Re . [FSEI S I [] — b s & 5
BRI R R .

Hdbe =

FRUEBHPNHE B OGE R ) Bl 5705, A1 lse
BT RBAMB RN IR T LR , RITE
MS-COCO Hi#a£e i SEL 1 e e AT I HERR 3 2
AR M T A EEGER . ERES T,
MR PR H bR 70 N LA TR H S A 21, A
A LLBS R B EAME S DL B SRR . Dy — T



WAL I A5t BIIR AL 1 AT S F M AT AR 8 1
BRIy, (HFE 2 AT REMEVIRBAR R, PR AE AR
T -

6. Bt

FATFE O Jiagang Zhu A1 Yiming Hu & H
1 S W XU LAESS B 7 B E K E SR
%28 2018YFD0400902 = Fl[E 5 H 4R Rl 45 & T H 28
61573349 S HI¥E B,
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