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Abstract dynamic objects (e.g. people), and scalability to large areas.

We introduce a novel CNN-based approach for visual lo-
calization from a single RGB image that relies on densely
matching a set of Objects-of-Interest (OOIls). In this pa-
per, we focus on planar objects which are highly descrip-
tive in an environment, such as paintings in museums or
logos and storefronts in malls or airports. For each OOI,
we define a reference image for which 3D world coordi-
nates are available. Given a query image, our CNN model
detects the OOIs, segments them and finds a dense set of
2D-2D matches between each detected OOI and its corre-
sponding reference image. Given these 2D-2D matches, to-
gether with the 3D world coordinates of each reference im-
age, we obtain a set of 2D-3D matches from which solving
a Perspective-n-Point problem gives a pose estimate. We
show that 2D-3D matches for reference images, as well
as OOl annotations can be obtained for all training im-
ages from a single instance annotation per OOI by leverag-
ing Structure-from-Motion reconstruction. We introduce a
novel synthetic dataset, VirtualGallery, which targets chal-
lenges such as varying lighting conditions and different oc-
clusion levels. Our results show that our method achieves
high precision and is robust to these challenges. We also
experiment using the Baidu localization dataset captured in
a shopping mall. Our approach is the first deep regression-
based method to scale to such a larger environment.

1. Introduction

Visual localization consists in estimating the 6-DoF cam-
era pose from a single RGB image within a given area,
also referred to as map. This is particularly valuable if
no other localization technique is available, e.g. in GPS-
denied environments such as indoor locations. Interesting
applications include robot navigation [8], self-driving cars
and augmented reality (AR) [6, 22]. The main challenges
include large viewpoint changes between query and train
images, incomplete maps, regions without valuable infor-
mation (e.g. textureless surfaces), symmetric and repetitive
elements, varying lighting conditions, structural changes,

Traditional structure-based approaches [17, 18, 24, 26,

, 34] use feature matching between query image and map,
coping with many of the mentioned challenges. However,
covering large areas from various viewpoints and under dif-
ferent conditions is not feasible in terms of processing time
and memory consumption. To overcome this, image re-
trieval can be used to accelerate the matching for large-
scale localization problems [10, 29, 35]. Recently, meth-
ods based on deep learning [2, 16] have shown promising
results. PoseNet [16] and its improvements [4, 7, 15, 39]
proceed by directly regressing the camera pose from input
images. Even if a rough estimate can be obtained, learn-
ing a precise localization seems too difficult or would re-
quire a large amount of training data to cover diversities
both in terms of locations and intrinsic camera parameters.
More interestingly, Brachmann et al. [2, 3] learn dense 3D
scene coordinate regression and solve a Perspective-n-Point
(PnP) problem for accurate pose estimation. The CNN is
trained end-to-end thanks to a differentiable approximate
formulation of RANSAC, called DSAC. Scene coordinate
regression-based methods obtain outstanding performance
in static environments, i.e., without changes in terms of ob-
jects, occlusions or lighting conditions. However, they are
restricted in terms of scene scale.

The above mentioned challenges of visual localization
become even more important in very large and dynamic en-
vironments. Essential assumptions, such as static and un-
changed scenes are violated and the maps become outdated
quickly while continuous retraining is challenging. This
motivated us to design an algorithm inspired by advances
on instance recognition [ 1] that relies on stable, prede-
fined areas, and that can bridge the gap between precise
localization and long-term stability in very vivid scenarios.
We propose a novel deep learning-based visual localization
method that proceeds by finding a set of dense matches be-
tween some Objects-of-Interest (OOIs) in query images and
the corresponding reference images, i.e., a canonical view
of the object for which a set of 2D-3D correspondences is
available. We define an Object-of-Interest as a discrimina-
tive area within the 3D map which can be reliably detected
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Figure 1. Overview of our pipeline. Given a query image, we use a CNN to first, detect and segment a predefined list of Objects-of-Interest,
and second, to regress dense matches to their reference images (dots in color). These reference images contain a dense 2D pixels to 3D
coordinates mapping. We thus obtain 2D-3D matches by transitivity and solve a PnP problem to obtain the camera localization.

from multiple viewpoints, partly occluded, and under vari-
ous lighting conditions. Figure 1 shows an overview of our
pipeline. Our model relies on DensePose [Y], a recent ex-
tension of Mask R-CNN [ 1] that not only detects and seg-
ments humans, but also regresses dense matches between
pixels in the image and a mesh surface. In our case, we use
it (i) to detect and segment OOIs, and (ii) to obtain a dense
set of 2D-2D matches between the detected OOIs and their
reference images. Given these matches, together with the
2D-3D correspondences of the reference images, we obtain
a set of 2D-3D matches from which camera localization is
obtained by solving a PnP problem using RANSAC.

Our method is carefully designed to tackle open chal-
lenges of visual localization, it has several advantages, and
few limitations with respect to the state of the art. First,
reasoning in 2D allows to train the model from few training
data: we can artificially generate a rich set of viewpoints
for each object with homography data augmentation and we
can achieve robustness to lighting changes with color jitter-
ing. Second, our method can handle dynamic scenes as long
as the OOIs remain static. For instance, one can accurately
estimate the pose in a museum with visitors present, even if
training data does not contain any humans. Third, if some
OOIs are moved, we do not need to retrain the whole net-
work as pose and scene regression-based approaches would
require, but we only need to update the 2D-3D mapping of
the reference images. Fourth, our method focuses on dis-
criminative objects and thus avoids ambiguous textureless
areas. Fifth, our method can scale up to large areas and high
numbers of OOIs as object detectors can segment thousands
of categories [ 13]. One clear limitation of our method is that
query images without any OOI cannot be localized. How-
ever, in many applications such as AR navigation, OOlIs are
present most of the time and local pose tracking (e.g. visual-
inertial odometry [1]) can be used in-between. OOI detec-
tion is interesting by itself in such an application, e.g. to
display metadata on paintings in a museum or on shops in
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malls and airports. Furthermore, in a complex real-world
application, OOIs can be used to more easily guide the user
to localize successfully. Commands such as ‘Take a picture
of the closest painting’ might be easier to understand than
‘Take a picture with sufficient visual information’.

In this paper, we restrict OOIs to planar objects which
are common in real-world applications: paintings, posters,
store fronts or logos are frequent in environments where lo-
calization is challenging such as shopping malls, airports
or museums. While the method can be generalized to non-
planar objects, considering planar OOIs has several advan-
tages, in addition to homography data augmentation. First,
the transformation between any instance of the OOI in a
training image and its reference image is a homography,
thus allowing to easily propagate dense sets of matches us-
ing a few correspondences only. Second, the mapping be-
tween 2D pixels in the reference image and 3D world coor-
dinates can be built from a small set of images since planes
can be robustly reconstructed in 3D. Finally, planar OOIs
allow us to reason in 2D, removing one degree of freedom
compared to 3D coordinate regression. Additionally, we
show that our method can be used with a minimal amount
of manual annotations, being one instance segmentation for
each (planar) OOl in any training image.

We demonstrate the strength of our approach on two
challenging datasets. The first one is a newly intro-
duced synthetic dataset, VirtualGallery, which represents
an art gallery. The second one is the Baidu localization
dataset [33] captured in a shopping mall with only a few
viewpoints at training and some changes in the scenes at
testing, showing the applicability of our approach in com-
plex real-world environments. While our method is accu-
rate on VirtualGallery (even with different lighting condi-
tions and occlusions) achieving a median error of less than
3cm and 0.5°, it also scales up to larger environment such
as the Baidu localization dataset. In contrast, deep state-of-
the-art regression-based approaches fail in such scenarios.
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2. Related Work

Most methods for visual localization can be categorized
into four types of approaches: structure-based methods, im-
age retrieval-based methods, pose regression-based meth-
ods and coordinate regression-based methods.
Structure-based methods [17, 18, 24, 26, 27, 34] use de-
scriptor matching (e.g. SIFT [21]) between 3D points of the
map associated with local descriptors and keypoint descrip-
tors in the query image. However, these point features are
not able to create a representation which is sufficiently ro-
bust to challenging real-world scenarios such as different
weather, lighting or environmental conditions. Addition-
ally, they lack the ability to capture global context and re-
quire robust aggregation of hundreds of points in order to
form a consensus to predict a pose [41].

Image retrieval-based methods [ 10, 29, 35, 36, 37] match
the query image with the images of the map using global de-
scriptors or visual words to obtain the image location from
the top retrieved images. The retrieved locations can fur-
ther be used to either limit the search range within large
maps of structure-based approaches [5, 28], or to directly
compute the pose between retrieved and query images [42].
These methods allow to speed-up search in large environ-
ments, but share similar drawbacks when using structure-
based methods for accurate pose computation. InLoc [35]
shows recent advances in image retrieval-based methods
leveraging dense information. It uses deep features to first
retrieve the most similar images, and then to estimate the
camera pose within the map. A drawback is the heavy pro-
cessing load and the need of accurate dense 3D models.
Pose regression-based methods [4, 16, 39] were the first
deep learning approaches trained end-to-end for visual lo-
calization. They proceed by directly regressing the 6-DoF
camera pose from the query image using a CNN, follow-
ing the seminal PoseNet approach [16]. The method has
been extended in several ways, by leveraging video infor-
mation [7], recurrent neural networks [39], hourglass archi-
tecture [23] or a Bayesian CNN to determine the uncertainty
of the localization [14]. More recently, Kendall et al. [15]
replace the naive L2 loss function by a novel loss that relies
on scene geometry and reprojection error. Brahmbhatt e?
al. [4] additionally leverage the relative pose between pairs
of images at training. Overall, pose regression-based meth-
ods have shown robustness to many challenges but remain
limited both in accuracy and scale.

Scene coordinate regression-based methods [2, 32, 38]
proceed by regressing dense 3D coordinates and estimat-
ing the pose using a PnP solver with RANSAC. While ran-
dom forests were used in the past [32, 38], Brachmann et
al. [2] recently obtain an extremely accurate pose estima-
tion by training a CNN to densely regress 3D coordinates.
They additionally introduce a differentiable approximation
of RANSAC, called DSAC, allowing end-to-end training

for visual localization at the cost of multi-step training, with
depth data required for the first step. DSAC++ [3] is an
improvement of the method where real depth data is not
mandatory and can be replaced by a depth prior. The net-
work is still trained in multiple steps: first based on depth
data or the prior; second, based on minimization of the re-
projection error; and finally based on camera localization
error using the DSAC module. DSAC++ obtains outstand-
ing performance on datasets of relatively small scale with
constant lighting conditions and little dynamics. However,
the method does not converge for larger scenes. In contrast,
our method is built upon an object detection pipeline, which
scales to large environments. Compared to DSAC++, since
we consider planar objects, we can regress 2D matches in-
stead of 3D coordinates, which removes one degree of free-
dom, and allows homography data augmentation.

3. Visual Localization Pipeline

In this section, we first present an overview of our ap-
proach in Section 3.1. Next, we introduce details about our
CNN model for segmenting OOIs and dense matching (Sec-
tion 3.2). Finally, Section 3.3 explains how SfM maps can
be leveraged to train our approach from weak supervision.

3.1. Visual localization from detected OOIs

Let O be the set of OOIs, and |O| the number of OOI
classes. Our method relies on reference images: each OOI
o € O is associated with a canonical view, i.e., an image
T, where o is fully visible. We assume for now that each
OOl is unique in the environment and that the mapping M,
between 2D pixels p’ in the reference image and the corre-
sponding 3D points in the world M, (p’) is known.

Given a query image, our CNN outputs a list of detec-
tions. Each detection consists of (a) a bounding box with a
class label o, i.e., the id of the detected OOI, and a con-
fidence score, (b) a segmentation mask, and (c) a set of
2D-2D matches {q — '} between pixels q in the query
image and pixels q’ in the reference image Z, of the object-
of-interest o, see Figure 1. By transitivity, we apply the
mapping M, to the matched pixels in the reference image
and obtain for each detection a list of matches between 2D
pixels in the query image and 3D points in the world coor-
dinates: {q — M,(d')}.

Given the list of 2D-3D matches for all detections in the
query image and the intrinsic camera parameters, we esti-
mate the 6-DoF camera pose by solving a Perspective-n-
Point problem using RANSAC.

Note that if there is no detection in a query image, we
do not have matches and, thus, we are not able to perform
localization. However, in venues such as museums or air-
ports, OOIs can be found in most of the images. Moreover,
in real-world applications, localization is used in conjunc-
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Figure 2. Overview of the network architecture to detect and seg-
ment OOIs as well as to obtain dense matches with respect to the
reference images.

tion with local pose tracking and, thus, precision of the sys-
tem is more important than coverage.

In summary, the only components learned in our ap-

proach are detection and dense matching between a query
image and the reference images of the OOlIs.
Handling non-unique OOIs. So far, we assumed that each
OOl is unique, i.e., it appears only once in the environment.
While most OOIs are highly discriminative, some of them
can have multiple instances in an environment, e.g. logos in
a shopping mall. In this case, as a detector cannot differ-
entiate them, we aggregate the same OOIs in a single class
and train the model with a common reference image. The
mapping M, is not unique anymore since there exist multi-
ple 3D coordinate candidates for the same reference image,
i.e., one per instance present in the environment. Given that
in practice we have a limited number of duplicates per OOI
and a limited number of detections per image, we solve the
PnP problem for the best combination of possible coordi-
nates using geometric plausibility checks. In detail, we min-
imize the sum of reprojection errors of the OOI 3D center
points in the query image. Ideally, the 3D center point lies
in the middle of the segmented detection. We ignore noise
due to incomplete detections of OOIs.

3.2. Detecting OOIs and matching to references

We follow DensePose [Y], an extension of Mask R-
CNN [11], designed for finding dense correspondences be-
tween any point on a human body and the corresponding
point on the surface mesh. For each box generated by the
region proposal networks (RPN) [25], C-dimensional con-
volutional features are estimated with a fixed resolution of
14 x 14 using the RolAlign layer. The Feature Pyramid
Networks (FPN) improvement [ 19] is used to better handle
small objects. Box features are fed to two branches. One of
them is designed to predict the class score (human vs. non-
human in their case) and to perform class-specific box co-
ordinate regression, following Faster R-CNN design [25].
The other branch, which is fully-convolutional, predicts a
per-pixel human body part label and per-pixel correspon-
dences (i.e., two coordinates) with the corresponding mesh
surface. In practice, the CNN predicts segmentation and
correspondences on a dense grid of size 56 x 56 in each box

which is then interpolated to obtain a per-pixel prediction.
In our case, given the box features after RolAlign, we
use a similar CNN model as DensePose, see Figure 2. One
branch predicts OOI scores and regresses bounding boxes,
the only difference being that we have |O| 4 1 classes (in-
cluding the background class) instead of 2. The second
branch predicts different tasks: (a) binary segmentation for
each OO, (b) OOI-specific v and v reference image coor-
dinate regression. At training time several losses are com-
bined. In addition to the FPN loss for box proposals, we
use the cross-entropy loss for box classification. For the
ground-truth class we use a smooth-L1 loss on its box re-
gressor, the cross-entropy loss for the 56 x 56 mask pre-
dictor, and smooth-L1 losses for the u— and v—regressors.
Training requires a ground-truth mask and matches for ev-
ery pixel. In Section 3.3, we explain how such annotations
can be automatically obtained from minimal annotation. At
test time, we keep the box detections with classification
score above 0.5 and keep the matches for the points within
the segmentation mask.
Implementation details. We use FPN [19] with both
ResNet50 [12] and ResNeXt101-32x8d [40] backbones.
The branch that predicts segmentation and match regres-
sion follows the Mask R-CNN architecture: it consists of 8
convolutions and ReLU layers before a final convolutional
layer of each task. We train the network for 500k iterations,
starting with a learning rate of 0.00125 on 1 GPU and di-
viding it by 10 after 300k and 420k iterations. We use SGD
as optimizer with a momentum of 0.9 and a weight decay
of 0.0001. To make all regressors proceeding at the same
scale, we normalize the reference coordinates in [0, 1].
Data augmentation. As our CNN regresses matches only
in 2D, we apply homography data augmentation on all in-
put images. To generate plausible viewpoints, we compute
arandom displacement limited by 33% of the image size for
each of the 4 corners and fit the corresponding homography.
We do not use flip data augmentation as OOIs (logos, paint-
ings, posters) are left-right ordered. We study the impact
of using color jittering (brightness, contrast, saturation) for
robustness against changing lighting conditions in our ex-
periments (Section 5).

3.3. Weakly-supervised OOI annotation

Key of our approach is the minimal amount of man-
ual annotations required, thanks to a propagation algo-
rithm that leverages a SfM reconstruction obtained with
COLMAP [30]. The only annotation to provide is one seg-
mentation mask for each planar OOI, see the blue mask in
the middle of Figure 3. The reference image for this OOl is
defined by the annotated mask.

Using the set of 2D to 3D matches from SfM, we la-
bel 3D points that match with 2D pixels in the annotated
OOI segmentation, see blue lines and dots in Figure 3. We
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Figure 3. The bounding box of the manual mask annotation in
blue (middle frame) defines the reference image for the OOI. We
propagate the OOI to the other training images (green mask in the
left image) using the 3D positions of keypoints within the annota-
tion (blue mask). Propagation may fail if not enough matches are
present (right image).

propagate the label to all training images which contain ob-
servations of these 3D points. If there are at least 4 matches
in an image, we can fit a homography given that the OOI o
is planar. For more robustness to noise, we only consider
regions with a minimum of 7 matches and use RANSAC-
based homography estimation. This homography is used to
propagate the mask annotation as well as the dense 2D-2D
matches, see the green mask on the left image of Figure 3.
Either due to a low number of matches leading to missing
propagation, see right image in Figure 3, or because of noisy
matches in the SfM model, the propagation is not always
successful. Fortunately, the CNN model is, to some extent,
robust against noisy or missing labels.
Handling non-unique OOIs. For non-unique OOIs, such
as a logo appearing multiple times in a shopping mall, we
annotate one segmentation mask for each instance of the
OOI and we apply our propagation method on each instance
independently. As mentioned above, it would be impossi-
ble for any detector to differentiate between the different
instances. Thus, we merge them into a single OOI class and
compute a homography between the reference images of
the different instances and the dedicated main reference im-
age using SIFT descriptor [2 1] matches. As main reference
for the class (OOI), we select the reference image with the
highest number of 3D matches. Since the regressed 2D-2D
matches correspond to the main class, we additionally ap-
ply a perspective transform using the computed intra-class
homographies, see Section 3.1.

4. Datasets

The VirtualGallery dataset. We introduce a new synthetic
dataset to study the applicability of our approach and to fur-
thermore measure the impact of varying lighting conditions
and occlusions on different localization methods. It con-
sists of a scene containing 3-4 rooms, see Figure 4 (left),
in which 42 free-of-use famous paintings' are placed on the

https://images.nga.gov/

Figure 4. Left: floorplan of the art gallery with the different train-
ing loops. Right: a training loop with the 6 cameras at a fixed
height (cyan) and test cameras at different plausible places.

j& B )

Figure 5. Test samples from VirtualGallery. First row: test images
with various viewpoints. Second and third rows: different lighting
conditions. Fourth row: different human densities (occlusions).

walls. The scene was created with the Unity software, al-
lowing to extract ground-truth information such as depth,
semantic and instance segmentations, 2D-2D and 2D-3D
correspondences, together with the rendered images.

We consider a realistic scenario that simulates the scene
captured by a robot for training and photos taken by visi-
tors for testing. The camera setup consists of 6 cameras in
a 360° configuration at a fixed height of 165cm, see Fig-
ure 4 (right). The robot follows 5 different loops inside the
gallery with pictures taken roughly every 20cm, resulting in
about 250 images for each camera, see Figure 4 (left).

At test time, we sample random positions, orientations
and focal lengths, ensuring that viewpoints (a) are plausible
and realistic (in terms of orientation, height and distance to
the wall), and (b) span the entire scene. This covers the
additional challenges of viewpoint changes and varying in-
trinsic camera parameters between training and test images.

To study robustness to lighting conditions, we gener-
ate the scene using 6 different lighting configurations with
significant variations between them, both at training and
test time, see second and third rows of Figure 5. To
evaluate robustness to occluders such as visitors, we gen-
erate test images which contain randomly placed human
body models, see last row of Figure 5. The test set con-
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Figure 6. Examples of training images from the Baidu localization
dataset with propagated mask annotations.

sists of 496 images that are rendered for each of the 6
lighting conditions and for 4 different densities of humans
present in the scene (including the empty case). The dataset
can be found at http://www.europe.naverlabs.com/
Research/3D-Vision/Virtual-Gallery-Dataset.

Objects-of-Interest. We use each painting as an object-of-
interest, each one being unique in the scene. We use the
original image downloaded from the website as reference
image. We obtain ground-truth segmentation masks and
2D-2D correspondences for each image using Unity. We
also get the position and size where the painting is placed
in the scene, thus providing the 2D-3D mapping functions.
Note that, among the test images, 5 out of 496 do not con-
tain any OOI, and 23 (respectively 48) additional ones have
no OOI visible by more than 50% (respectively 80%).

The Baidu localization dataset [33]. It consists of images
captured in a Chinese shopping mall covering many chal-
lenges for visual localization such as reflective and trans-
parent surfaces, moving people and repetitive structures. It
contains 689 images captured with DSLR cameras as train-
ing set and over 2000 cell phone photos taken by different
users a few months later as test set. The test images contain
significant viewpoint changes compared to the training im-
ages that are all taken parallel or perpendicular with respect
to the main corridor. All images were semi-automatically
registered to the coordinate system defined by a LIDAR
scanner. We use the provided camera poses, both for train-
ing (3D reconstruction of the OOIs and annotation propa-
gation) and testing (ground-truth evaluation of the results).
We did not use the LIDAR data, even if it would potentially
improve the 3D reconstruction quality of our OOlIs.
Objects-of-Interest. We manually annotated one segmenta-
tion mask for 220 instances from 164 classes representing
different types of planar objects such as logos or posters
on storefronts. We then propagated these annotations to all
training images, see Section 3.3. This real-world dataset
is more challenging than VirtualGallery, thus, some OOI
propagations are noisy. Figure 6 shows examples of train-
ing images with masks around the OOIs after propagation.

5. Experimental results

We evaluate our approach on VirtualGallery (Sec-
tion 5.1) and on the Baidu localization dataset (Section 5.2).

5.1. Experiments on VirtualGallery

We use different train/test scenarios to evaluate some
variants of our method and to study the robustness of state-
of-the-art approaches to lighting conditions and occlusions.
In the experiments below, we use the ground-truth corre-
spondences obtained from Unity. We experimented with
manual annotations and obtained similar performance.
Impact of data augmentation. We first study the impact
of homography data augmentation at training. We train
models with ResNet50 (resp. ResNext101) backbone on the
first loop of the standard lighting condition, and report the
percentages of successfully localized images with the stan-
dard lighting condition and no humans in Figure 7 (plain
blue and dotted blue, resp. black, curves). Homography
data augmentation significantly improves the performance,
specifically for highly accurate localization: the ratio of lo-
calized images within Scm and 5° increases from 25% to
69% with ResNet50 backbone. The impact is less signif-
icant at higher error thresholds with an improvement from
72% to 88% at 25cm and 5°. Homography data augmen-
tation at training allows to generate more viewpoints of the
OOISs and, thus, to better detect and match OOIs captured
from unknown viewpoints at test time.

Impact of regressing dense 2D-2D matches. We now
compare our approach that relies on 2D-2D dense corre-
spondences to a few variants. First, we directly regress
the 8-DoF homography parameters (OOIs-homog) between
the detected OOI and its reference image and generate the
dense set of 2D-2D matches afterwards. Second, we di-
rectly regress 3D world coordinates for each OOI instance
(OOIs-2D-3D) without using the reference image. Perfor-
mances with the same train/test protocol as above are re-
ported in Figure 7. Regressing the 8 parameters of the
homography leads to a drop of performance, only 70% of
the images could be successfully localized within 25cm and
5°. CNNs have difficulties regressing parameters of trans-
formations where small differences can lead to significant
changes of the result. The 3D variant performs reason-
ably well, with roughly 70% of images localized within
10cm and 5°, and 81% within 25cm and 5°. However, our
method with 2D reference images outperforms the 3D vari-
ant, specifically for low position error thresholds. Our 2D
reference images ensure that all 3D points are on the planar
object, while the 3D variant adds one extra and unneces-
sary degree of freedom. We finally replace the ResNet50
backbone by ResNeXt101-32x8d and obtain a more pre-
cise localization at low thresholds (8% additional images
are localized within 5cm and 5°); the difference becomes
marginal at higher thresholds.

Comparison to the state of the art. We now compare our
approach to a SfM method (COLMAP [30, 31]), PoseNet
with geometric loss [15], and DSAC++ trained with a 3D
model [3]. All methods are trained on all loops from all
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Figure 8. Robustness to lighting conditions and occlusions with the percentages of localized images on VirtualGallery test set for varying
position error threshold and a fixed 5° orientation error threshold. Left: training on the standard lighting condition, testing on all lighting
conditions without human (+c indicates training with color jittering). Middle: training on all lighting conditions (except COLMAP), testing
on all lighting conditions without humans. Right: training on all lighting conditions (except COLMAP), testing on all lighting conditions

with all human occlusion levels.

lighting conditions and tested on all lighting conditions
without human occlusion, except COLMAP which is only
trained using the standard lighting. The percentages of suc-
cessfully localized images at a given error threshold are re-
ported in Figure 8 (middle). The performance of PoseNet
with geometric loss [15] is quite low because the training
data does not contain enough variation: all images are cap-
tured at the same height, with 0° roll and pitch. Conse-
quently, it learns this training data bias which is not valid
anymore on the test data. COLMAP performs best with
about 95% of the images localized within 10cm and 5°.
DSAC++ localizes 75% of images within 5cm and 5°. Our
approach performs similarly at low thresholds achieving
about the same percentage of images successfully localized
within 5cm and 5°. At higher thresholds, our method satu-
rates earlier (around 88% with ResNeXt101 backbone) than
DSAC++. We find that our approach fails to detect OOIs in
cases where they are poorly visible (see top right example of
Figure 5), thus we cannot localize such images. In contrast,
DSAC++ can better handle this case as it relies not only
on the OOIs but on the entire image. Overall, our method
still computes highly accurate localization in standard cases
where at least one OOI is present. We achieve a median er-
ror of less than 3cm, which is slightly lower than DSAC++.

Impact of the quantity of training data. Figure 7 (mid-
dle) shows the performance of our method when reducing

the amount of training data. The percentages of localized
images is roughly constant, even when training on only 1
image out of 15 (7%) of the first loop. In contrast, DSAC++,
see Figure 7 (right), shows a larger drop of performance
when training on a few images, highlighting the robustness
of our approach to a small amount of training data. We did
not observe significant difference with COLMAP, as two
views of each point are sufficient to build the map of this
comparably easy dataset for structure-based methods.
Robustness to lighting conditions. To study the robustness
to different lighting conditions, we compare the average
performance over the test sets with all lighting conditions
without human, when training on all loops of the standard
lighting condition only, see Figure 8 (left) vs. training on all
loops and all lighting conditions, see Figure 8 (middle).
The performance of PoseNet drops by about 10% at 1m
and 5° when training on only one lighting condition, despite
color jittering at training. The performance of COLMAP
stays constant even if we train using the standard lighting
condition only (SfM does not work well with multiple im-
ages from identical poses, as in our training data with dif-
ferent lighting conditions). The high quality images and the
unique patterns are easy to handle for illumination invari-
ant SIFT descriptors. The performance of DSAC++ without
any color data augmentation drops significantly when train-
ing on one lighting condition; in detail, by a factor of around
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Figure 9. Left: input images with overlaid detections of masks.
Right: for each detected class, we warp the reference image ac-
cording to the homography fitted from the regressed matches.

6, which is the number of different lighting conditions. This
means that only the images with the same lighting as train-
ing are localized, but almost none of the others. However,
when adding color jittering to DSAC++ at training, the per-
formance slightly increases.

The performance of our method (plain blue curve, on the
left plot) is significantly higher than DSAC++ and PoseNet
when training on one lighting condition, with about 30%
of the images localized with an error below 25cm and 5°,
showing that we overfit less on the training lighting condi-
tion. We also try to incorporate color jittering at training
(dotted blue curve on the left plot) and obtain a significant
increase of performance, achieving almost 85% of localized
images with an error below 25cm and 5°. This performance
is pretty close to the one obtained when training on all light-
ing conditions (middle plot), which can be considered as an
upper bound of achievable results. In practice, this means
that for real-world applications our method can be used even
if only one lighting condition is present in the training data.

Robustness to occlusions. To study robustness to occlu-
sions, we compare the performance of all methods when
training on all loops and all lighting conditions, and testing
on (a) all lighting conditions without visitors, see Figure 8
(middle), and (b) all lighting conditions and various visitor
densities, see Figure 8 (right). All methods show a slight
drop of performance. For our approach, the decrease of
performance mostly comes from images where (a) only one
painting is present and (b) the OOI is mostly occluded. This
causes the OOI detection to fail. In most cases however,
our approach is robust despite not having seen any human
at training. Figure 9 shows examples of instance segmenta-
tion (left) in presence of humans. To visualize the quality of
the matches, we fitted homographies between the test image
and the reference images and warped the reference images
onto the query image plane. We observe that the masks and
the matches remain accurate.

———
—— COLMAP

—— PoseNet

—— DSAC++

-=-- Ours w/o data aug.

localized images (%)

—— Ours (ResNeXt101)
—— Ours (ResNeXt101) + BA 7

3 4 5
position error threshold (m)

Figure 10. Percentages of localized images on the Baidu localiza-
tion dataset for varying position error thresholds and an orientation
error threshold of 5° for pos. error below 1m, 10° for pos. error be-
tween 1m and 2.5m, and 20° for pos. error above 2.5m.

5.2. Experiments on the Baidu localization dataset

Figure 10 presents results on the Baidu localization
dataset [33]. This benchmark represents a realistic sce-
nario which makes it extremely challenging: (a) the training
data is limited to 689 images, captured in a mall of around
240m, (b) training and test images have different cameras
and viewpoints, and (c) the environment has some changes
in terms of lighting conditions and dynamic objects. Deep
state-of-the-art approaches perform poorly, with less than
2% of images localized within 2m and 10°. COLMAP is
able to localize more images, with about 45% at 1m and
5° and 58% at 5Sm and 20°. Our method is the first deep
regression-based method able to compete with structured-
based methods on this dataset. We successfully localize
about 25% of the images within Im and 10° and almost
40% within 5m and 20°. To further increase accuracy, we
ran a non-linear least square optimization (sparse bundle ad-
justment [20]) as post processing (grey curve) obtaining a
performance increase of about 2%. Figure 10 again high-
lights the benefit of homography data augmentation at train-
ing (plain vs. dotted blue curves). We are not able to localize
about 10% of the query images where no OOl is detected.

6. Conclusion

We proposed a novel approach for visual localization
that relies on densely matching a set of Objects-of-Interest.
It is the first deep regression-based localization method that
scales to large environments like the one of the Baidu local-
ization dataset. Furthermore, our approach achieves high
accuracy on smaller datasets like the newly introduced Vir-
tualGallery. Since our method relies on OOIs, localization
is only possible in the presence of OOIs. This putative
drawback is a core characteristic of our approach because
it enables the use of visual localization in fast changing and
dynamic environments. For this to be true we assume that in
such a situation at least the selected OOIs remain stable or
can be tracked when being moved or changed. The learning
component of our approach allows to increase robustness
against changing lighting conditions and viewpoint varia-
tions. Future work include automatic mining of OOIs as
well as generalizing to non-planar OOIs.
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