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PSS EF ML AUC(%)
SULTANI %5 [24] C3D-RGB 75.41
SULTANTI 45 [24] I3D-RGB 77.92
IBL [41] C3D-RGB 78.66
GCL [40] ResNext 79.84
GCN [42] TSN-RGB 82.12
MIST [5] I3D-RGB 82.30
Wu %[36] I3D-RGB 82.44
CLAWS [39] C3D-RGB 83.03
RTFM [28] VideoSwin-RGB 83.31
RTFM [28] I3D-RGB 84.03
Wu & Liu [35] I3D-RGB 84.89
MSL [15] I3D-RGB 85.30
MSL [15] VideoSwin-RGB 85.62
S3R [34] I3D-RGB 85.99
MGFN [2] VideoSwin-RGB 86.67
MGEN [2] I3D-RGB 86.98
SSRL [13] I3D-RGB 87.43
CLIP-TSA [11] ViT 87.58
SVM [24] = 50.00
SSV [23] = 58.50
BODS [33] I3D-RGB 68.26
GODS [33] I3D-RGB 70.46
GCL [40] ResNext 74.20
TURr % [30] ResNet 65.22
TUR %5 [31] ResNet 66.85
DYANNET [27] 13D 79.76
ZS CLIP [22] ViT 53.16
ZS IMAGEBIND (IMAGE) [6] ViT 53.65
ZS IMAGEBIND (VIDEO) [6] ViT 55.78
LLAVA-1.5[17] ViT 72.84
LAVAD ViT 80.28
Table 1. £ UCF-Crime ¥ £ £ 5 & I W

FhE - —K . BREE % %% FEBWH.
RINGEEH I RESRAEEZEX -

B, AR R R S & = [, ]
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4. Experiments

BNMERIRIEE ERIETRINMNBANERR
LAVAD , 51, BEBEN&KI VAD ZE5E %1
GREBR AT . BATEHT T ZHHEBHR,
PLISEUE R T AT AR - R B/ &
Witk E . BTk, BATE LRSS T EE, 88K
EESEMERETEIR - WU, BATE 22 PRI BT
R, Sec. 4.2 HFITIHIR - L EMLEE R TR
HIVHSSESE I #N TR R -

BOE S, FATHE B A B VAD B8R £ R I K
ITAEE, XA EIEEEEESSEEY R, 2%
UCF-Crime [24] 5& XD-Violence [36] -

UCF-Crime 5&=—" " REEIRE, BF 1900 MKAIR
BB STIA AN, TR 13 RESSRY - IGERT
800 MY EMAISE 810 NFEHE MM, MHEEA 150
R HAIHR5E 140 4> B2 050 -

Bk FFM%  AP(%) AUC(%)
Wu % [36] C3D-RGB 67.19 -
Wu 4 [36] 13D-RGB 73.20 -
MSL [15] C3D-RGB 75.53 -
WU & L1u[35] 13D-RGB 75.90 -
RTEM [28] I3D-RGB 77.81 =
MSL [15] 13D-RGB 78.28 -
MSL [15] VideoSwin-RGB  78.58 -
S3R[34] 13D-RGB 80.26 -
MGFEFN [2] 13D-RGB 79.19 -
MGEFN [2] VideoSwin-RGB  80.11 -
HASAN % [8] AERCB - 50.32*
LU % [19] Dictionary - 53.56*
BODS [33] 13D-RGB - 57.32*
GODS[33] I13D-RGB - 61.56*
RAREANOM [26] 13D-RGB - 68.33*
ZS CLIP [22] ViT 17.83 38.21
ZS IMAGEBIND (IMAGE) [6] ViT 27.25 58.81
ZS IMAGEBIND (VIDEO) [6] ViT 25.36 55.06
LLAVA-1.5[17] ViT 50.26 79.62
LAVAD ViT 62.01 85.36
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Tt BT Y F A EINAE DyAnNet [27] 8 +0.52%
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IMAGEBIND (IMAGE) 5% ZS IMAGEBIND (VIDEO) Z51&
B ZS3EIER VAD PEEE . X 2R VLM KEH#
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HIhESNE BB E - XA RER VLM 7E VAD 155 Lz
SPEE NI ERE BRI « BEENEWHET R 5 HER
[X ] LLAVA-1.5 EE7E VAD PERE FEHEEFIH VLM
HITERERER LR L, EOAMEANMEE, B
TR T HEE KR iR T B8 T,

. AERTIIERFT o RYA0LE Tab. 3 FRAT X AT BS A 5T AR IIE
SLHOBREE, B FEARAEREAE, HER-

FATIATE Tab. 2 FAT X T #£ XD-Violence £(#54E I
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Abstract

Video anomaly detection (VAD) aims to temporally locate
abnormal events in a video. Existing works mostly rely on
training deep models to learn the distribution of normality
with either video-level supervision, one-class supervision,
or in an unsupervised setting. Training-based methods are
prone to be domain-specific, thus being costly for practi-
cal deployment as any domain change will involve data
collection and model training. In this paper, we radically
depart from previous efforts and propose LAnguage-based
VAD (LAVAD), a method tackling VAD in a novel, training-
free paradigm, exploiting the capabilities of pre-trained
large language models (LLMs) and existing vision-language
models (VLMs). We leverage VLM-based captioning models
to generate textual descriptions for each frame of any test
video. With the textual scene description, we then devise a
prompting mechanism to unlock the capability of LLMs in
terms of temporal aggregation and anomaly score estimation,
turning LLMs into an effective video anomaly detector. We
further leverage modality-aligned VLMs and propose effec-
tive techniques based on cross-modal similarity for cleaning
noisy captions and refining the LLM-based anomaly scores.
We evaluate LAVAD on two large datasets featuring real-
world surveillance scenarios (UCF-Crime and XD-Violence),
showing that it outperforms both unsupervised and one-class
methods without requiring any training or data collection.

1. Introduction

Video anomaly detection (VAD) aims to temporally localize
events that deviate significantly from the normal pattern
in a given video, i.e. the anomalies. VAD is challenging
as anomalies are often undefined and context-dependent,
and they rarely occur in the real world. The literature [10]
often casts VAD as an out-of-distribution detection problem
and learns the normal distribution using training data with
different levels of supervision (see Fig. 1), including fully-
supervised (i.e. frame-level supervision of both normal and
abnormal videos) [1, 32], weakly-supervised (i.e. video-level

State-of-the-art methods Our proposal
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Figure 1. We introduce the first training-free method for video
anomaly detection (VAD), diverging from state-of-the-art methods
that are ALL training-based with different degrees of supervision.
Our proposal, LAVAD, leverages modality-aligned vision-language
models (VLMs) to query and enhance the anomaly scores generated
by large language models (LLMs).

supervision of both normal and abnormal videos) [11, 13,
15, 24, 28, 35], one-class (i.e. only normal videos) [18, 20,
21, 25, 37, 38], and unsupervised (i.e. unlabeled videos) [30,
31, 40]. While more supervision leads to better results, the
cost of manual annotation is prohibitive. On the other hand,
unsupervised methods assume abnormal videos to constitute
a certain portion of the training data, a fragile assumption in
practice without human intervention.

Crucially, every existing method necessitates a training
procedure to establish an accurate VAD system, and this
entails some limitations. One primary concern is general-
ization: a VAD model trained on a specific dataset tends to
underperform in videos recorded in different settings (e.g.,
daylight versus night scenes). Another aspect, particularly
relevant to VAD, is the challenge of data collection, espe-
cially in certain application domains (e.g. video surveillance)
where privacy issues can hinder data acquisition. These con-
siderations led us to explore a novel research question: Can
we develop a training-free VAD method?
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In this paper, we aim to answer this challenging question.
Developing a training-free VAD model is hard due to the
lack of explicit visual priors on the target setting. However,
such priors might be drawn using large foundation models,
renowned for their generalization capability and wide knowl-
edge encapsulation. Thus, we investigate the potential of
combining existing vision-language models (VLMs) with
large language models (LLMs) in addressing training-free
VAD. On top of our preliminary findings, we propose the
first training-free LAnguage-based VAD method (LAVAD),
that jointly leverages pre-trained VLMs and LLMs for VAD.
LAVAD first exploits an off-the-shelf captioning model to
generate a textual description for each video frame. We ad-
dress potential noise in the captions by introducing a cleaning
process based on the cross-modal similarity between cap-
tions and frames in the video. To capture the dynamics of
the scene, we use an LLM to summarize captions within a
temporal window. This summary is used to prompt the LLM
to provide an anomaly score for each frame, which is further
refined by aggregating the anomaly scores among frames
with semantically similar temporal summaries. We evaluate
LAVAD on two benchmark datasets: UCF-Crime [24] and
XD-Violence [36], and empirically show that our training-
free proposal outperforms unsupervised and one-class VAD
methods on both datasets, demonstrating that it is possible
to address VAD with no training and no data collection.

Contributions. In summary, our contributions are:

* We investigate, for the first time, the problem of training-
free VAD, advocating its importance for the deployment
of VAD systems in real settings where data collection may
not be possible.

* We propose LAVAD, the first language-based method for
training-free VAD using LLMs to detect anomalies exclu-
sively from a scene description.

* We introduce novel techniques based on cross-modal sim-
ilarity with pre-trained VLMs to mitigate noisy captions
and refine the LLM-based anomaly scoring, effectively
improving the VAD performance.

* Experiments show that, while using no task-specific su-
pervision and no training, LAVAD achieves competitive
results w.r.t. unsupervised and one-class VAD methods,
opening new perspectives for future VAD research.

2. Related Work

Video Anomaly Detection. Existing literature on training-
based VAD methods can be categorized into four groups,
depending on the level of supervision: supervised, weakly-
supervised, one-class classification, and unsupervised. Su-
pervised VAD relies on frame-level labels to distinguish nor-
mal from abnormal frames [1, 32]. However, this scenario
has received little attention due to its prohibitive annota-
tion effort. Weakly-supervised VAD methods have access

to video-level labels (the entire video is labeled as abnor-
mal if at least one frame is abnormal, otherwise is regarded
as normal) [11, 13, 15, 24, 28, 35]. Most of these meth-
ods utilize 3D convolutional neural networks for feature
learning and employ a multiple instance learning (MIL) loss
for training. One-class VAD methods train only on nor-
mal videos, although manual verification is necessary to
ensure the normality of the collected data. Several methods
[18, 20, 21, 25, 37, 38] have been proposed, e.g. consider-
ing generative models [37] or pseudo-supervised methods,
where pseudo-anomalous instances are synthesized from nor-
mal training data [38]. Finally, Unsupervised VAD methods
do not rely on predefined labels, leveraging both normal
and abnormal videos with the assumption that most videos
contain normal events [26, 27, 30, 31, 40]. Most methods
in this category exploit generative models to capture normal
data patterns in videos. In particular, generative coopera-
tive learning (GCL) [40] employs alternating training: an
autoencoder reconstructs input features, and pseudo-labels
from reconstruction errors guide a discriminator. Tur ef al.
[30, 31] use a diffusion model to reconstruct the original
data distribution from noisy features, calculating anomaly
scores based on the reconstruction error between denoised
and original samples. Other approaches [26, 27] train a re-
gressor network from a set of pseudo-labels generated using
OneClassSVM and iForest [16].

Instead, we completely sidestep the need for collecting
data and training the model by exploiting existing large-
scale foundation models to design a training-free pipeline
for VAD.

LLMs for VAD. Recently, LLMs have been explored in de-
tecting visual anomalies across diverse application domains.
Kim et al. [12] propose an unsupervised method that mainly
leverages VLMs for detecting anomalies, where ChatGPT is
only utilized to produce textual descriptions that character-
ize normal and anomalous elements. However, the method
involves human-in-the-loop to refine the LLLM’s outputs ac-
cording to specific application contexts and requires further
training to adapt the VLM. Other examples include exploit-
ing LLMs for spatial anomaly detection in images addressing
specific applications in robotics [4] or industry [7].

Differently, we leverage LLMs together with VLMs to
address temporal anomaly detection on videos and propose
the first training-free method for VAD, requiring no training
and no data collection.

3. Training-Free VAD

In this section, we first formalize the VAD problem and the
proposed training-free setting (Sec. 3.1). We then analyze the
capabilities of LLMs in scoring anomalies in video frames
(Sec. 3.2). Finally, we describe LAVAD, our proposed VAD
method (Sec. 3.3).
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Figure 2. Bar plot of the VAD performance (AUC ROC) by query-
ing LLMs with textual descriptions of video frames from various
captioning models on the UCF-Crime test set. Different bars cor-
respond to different variants of the captioning model BLIP-2 [14],
while different colors indicate two different LLMs [9, 29]. For
reference, we also plot the performance of the best-performing un-
supervised method [27] in a red dashed line, and that of a random
classifier in a gray dashed line.
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Figure 3. The anomaly score predicted by Llama [29] over time for
video Shooting033 from UCF-Crime. We highlight some sample
frames with their associated BLIP-2 captions to demonstrate that
the caption can be semantically noisy or incorrect (red bounding
boxes are for abnormal predictions while blue bounding boxes are
for normal predictions). 'Ground-truth anomalies are highlighted.
In particular, the caption of the frame enclosed by a blue bounding
box within the ground truth anomaly fails to accurately represent
the visual content, leading to a wrong classification due to the low
anomaly score given by the LLM.

3.1. Problem formulation

Given a test video V = [Iy,...,Iy/] of M frames, tradi-
tional VAD methods aim to learn a model f, which can
classify each frame I € V as either normal (score 0) or
anomalous (score 1), i.e. f : ZM — [0, 1]M with Z be-
ing the image space. f is usually trained on a dataset D
that consists of tuples in the form (V, y). Depending on
the supervision level, y can be either a binary vector with
frame-level labels (fully-supervised), a binary video-level
label (weakly-supervised), a default one (one-class), or ab-

sent (unsupervised). However, in practice, it can be costly to
collect y as anomalies are rare, and V itself due to potential
privacy concerns. Moreover, both label and video data may
need regular updates due to evolving application contexts.
Differently, in this paper, we introduce a novel setup for
VAD, termed as training-free VAD. Under this setting, we
aim to estimate the anomaly score of each I € V using
only pre-trained models at inference time, i.e. without any
training or fine-tuning involving a training dataset D.

3.2. Are LLMs good for VAD?

We propose to address training-free VAD by exploiting re-
cent advances in LLMs. As the use of LLMs in VAD is still
in its infancy [12], we first analyze the capabilities of LLMs
in producing an anomaly score based on a textual description
of a video frame.

To achieve this, we first exploit a state-of-the-art cap-
tioning model ®¢, i.e. BLIP-2 [14], to generate a textual
description for each frame I € V. We then treat anomaly
score estimation as a classification task, asking an LLM Py
to select only one score from a list of 11 uniformly sampled
values in the interval [0, 1], where 0 means normal and 1
anomalous. We get the anomaly score as:

(I)LLM(PCOPF Oq)c(:[)) (1)

where P¢ is a context prompt that provides priors to the
LLM regarding VAD, P instructs the LLM on the desired
output format to facilitate automated text parsing', and o is
the text concatenation operation. We devise P to simulate
a potential end user of a VAD system, e.g. law enforcement
agency, as we empirically observe that impersonation can
be an effective way of guiding the output generation of the
LLM. For example, we can form P as: “If you were a law
enforcement agency, how would you rate the scene described
on a scale from 0 to 1, with 0 representing a standard scene
and 1 denoting a scene with suspicious activities?”’. Note
that P~ does not encode any prior on the type of anomalies
itself, but just on the context.

Finally, with the estimated anomaly score from Eq. (1),
we measure the VAD performance using the standard area
under the curve of the receiver operating characteristic (AUC
ROC). Fig. 2 reports the results obtained on the test set of
the UCF-Crime dataset [24] with different variants of BLIP-
2 for obtaining the frame captions, and with different LLMs
including Llama [29] and Mistral [9] for computing the
frame-level anomaly scores. For reference, we also provide
the state-of-the-art performance under the unsupervised set-
ting (the closest setting to ours) [27], and the random scoring
as lower-bound. The plot demonstrates that state-of-the-art
LLMs possess anomaly detection capabilities, largely out-
performing random scoring. However, this performance is

I'The exact form of P = can be found in the Supp. Mat.
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Figure 4. The architecture of our proposed LAVAD for addressing training-free VAD. For each test video V, we first employ a captioning
model to generate a caption C'; for each frame I; € V, forming a caption sequence C. Our Image-Text Caption Cleaning component
addresses noisy and incorrect raw captions based on cross-modal similarity. We replace the raw caption with a caption C; € C whose
textual embedding ST(C'i) is most aligned to the image embedding & (I;), resulting in a cleaned caption sequence C. To account for scene
context and dynamics, our LLM-based Anomaly Scoring component further aggregates the cleaned captions within a temporal window
centered around each I; by prompting the LLM to produce a temporal summary S;, forming a summary sequence S. The LLM is then
queried to provide an anomaly score for each frame based on its S;, obtaining the initial anomaly scores a for all frames. Finally, our
Video-Text Score Refinement component refines each a; by aggregating the initial anomaly scores of frames whose textual embeddings of the
summaries are mostly aligned to the representation £y (V) of the video snippet V; centered around I;, leading to the final anomaly scores

a for detecting the anomalies ( anomalous frames are highlighted) within the video.

much lower w.r.t. trained state-of-the-art methods, even in
an unsupervised setting.

We observe that two aspects might be the limiting factors
in LLMs’ performance. Firstly, the frame-level captions
can be very noisy: the captions might be broken or may
not fully reflect the visual content (see Fig. 3). Despite the
use of BLIP-2 [14], the best off-the-shelf captioning model,
some captions appear corrupted, thus leading to unreliable
anomaly scores. Secondly, the frame-level caption lacks de-
tails about the global context and the dynamics of the scene,
which are key elements when modeling videos. In the follow-
ing, we address these two limitations and propose LAVAD,
the first training-free method for VAD that leverages LLMs
for anomaly scoring together with modality-aligned VLMs.

3.3. LAVAD: LAnguage-based VAD

LAVAD decomposes the VAD function f into five elements
(see Fig. 4). As in the preliminary study, the first two are
the captioning module ®; mapping images to textual de-
scriptions in the language space T, i.e. &¢ : Z — T, and
the LLM @1y generating text from language queries, i.e.
@ : T — T. The other elements involve three en-

coders mapping input representations to a shared latent space
Z. Specifically we have the image encoder &7 : Z — Z,
the textual encoder & : T — Z, and the video encoder
Ev : ¥V — Z for videos. Note that all five elements involve
only off-the-shelf frozen models.

Following the positive findings of the preliminary analy-
sis, LAVAD leverages ®11y and ®¢ to estimate the anomaly
score for each frame. We design LAVAD to address the
limitations related to noise and lack of scene dynamics in
frame-level captions by introducing three components: i)
Image-Text Caption Cleaning through the vision-language
representations of &5 and &, ii) LLM-based Anomaly Scor-
ing, encoding temporal information via @y and iii) Video-
Text Score Refinement of the anomaly scores via video-text
similarity, using £ and Ep. In the following, we describe
each component in detail.

Image-Text Caption Cleaning. For each test video V, we
first employ @ to generate a caption C; for each frame
I, € V. Specifically, we denote as C = [C,...,Cy]
the sequence of captions, where C; = ®¢(I;). However,
as shown in Sec. 3.2, the raw captions can be noisy, with



broken sentences or incorrect descriptions. To mitigate this
issue, we rely on the captions of the whole video C assum-
ing that in this set there exist captions that are unbroken
and better capture the content of their respective frames, an
assumption often verified in practice as the video features a
scene captured by static cameras at a high frame rate. Thus,
semantic content among frames can overlap regardless of
their temporal distances. From this perspective, we treat
caption cleaning as finding the semantically closest caption
to a target frame I; within C.

Formally, we make use of vision-language encoders and
form a set of caption embeddings by encoding each caption
in Cvia &r, i.e. {E7(CY),...,Er(Chr)}. For each frame
I, € V, we compute its closest semantic caption as:

C; = arg glgé(é’[(li) -Er(C)), 2)

where (-, -) is the cosine similarity, and £; the image encoder
of the VLM. We then build the cleaned set of captions as
C = [C4,...,Cy), replacing each initial caption C; with
its counterpart C; retrieved from C. By performing the
caption cleaning process, we can propagate the captions
of frames that are semantically more aligned to the visual
content, regardless of their temporal positioning, to improve
or correct noisy descriptions.

LLM-based Anomaly Scoring. The obtained caption se-
quence C, while being cleaner than the initial set, lacks tem-
poral information. To overcome this, we leverage the LLM to
provide temporal summaries. Specifically, we define a tem-
poral window of 1" seconds, centered around I,;. Within this
window, we uniformly sample N frames, forming a video
snippet V;, and a caption sub-sequence C; = {C, }\_,. We
can then query the LLM with C;anda prompt P g to get the
temporal summary .S; centered on frame I;:

S; = Bru(Pg o C;) 3)

where the prompt P g is formed as “Please summarize what
happened in few sentences, based on the following temporal
description of a scene. Do not include any unnecessary
details or descriptions.”.

Coupling Eq. (3) with the refinement process of Eq. (2),
we obtain a textual description of the frame (.S;) which is
semantically and temporally richer than C;. With S;, we
can then query the LLLM for estimating an anomaly score.
Following the same prompting strategy described in Sec. 3.2,
we ask ®ppy to assign to each temporal summary S; a score
a; in the interval [0, 1]. We get the score as:

a; = Pm(Pc oProS;) 4

where, as in Sec. 3.2, P is a context prompt containing
VAD contextual priors, and P  provides information on the
desired output format.

2C; s represented as an ordered list, with items separated by \n.

Video-Text Score Refinement. By querying the LLM for
each frame in the video with Eq. (4), we obtain the initial
anomaly scores of the video a = [ay, ..., ap]. However,
a is purely based on the language information encoded in
their summaries, without taking into account the whole set
of scores. Thus, we further refine them by leveraging the
visual information to aggregate scores from semantically
similar frames. Specifically, we encode the video snippet V;
centered around I; using £ and all the temporal summaries
using E7. Let us define K; as the set of indices of the K-
closest temporal summaries to V; in {S1, ..., Sy}, where
the similarity between V; and a caption \S; is the cosine
similarity, i.e. (v (V;),Er(S;)). We obtain the refined
anomaly score a;:

o(Ev(Vi).E7(SK))

a; = ay - : 4)
kezléi ZkeKi el&v (Vi),Er(Sk))

where (-, ) is the cosine similarity. Note that Eq. (5) ex-
ploits the same principles of Eq. (2), refining frame-level
estimations (i.e. score/captions) using their visual-language
similarity (i.e. video/image) with other frames in the video.
Finally, with the refined anomaly scores for the test video
a=/|a,...,ap], we identify the anomalous temporal win-
dows via thresholding.

4. Experiments

We validate our training-free proposal LAVAD on two
datasets in comparison with state-of-the-art VAD methods
that are trained with different levels of supervision, as well
as training-free baselines. We conduct an extensive ablation
study to justify our main design choices regarding the pro-
posed components, prompt design, and score refinement. In
the following, we first describe our experimental setup in
terms of datasets and performance metrics. We then present
and discuss the results in Sec. 4.1, followed by the ablation
study in Sec. 4.2. We show more qualitative results and
ablation on minor designs in the Supp. Mat.

Datasets. We evaluate our method using two commonly
used VAD datasets featuring real-world surveillance scenar-
i0s, i.e. UCF-Crime [24] and XD-Violence [36].
UCF-Crime is a large-scale dataset that is composed of 1900
long untrimmed real-world surveillance videos, covering
13 real-world anomalies. The training set consists of 800
normal and 810 anomalous videos, while the test set includes
150 normal and 140 anomalous videos.

XD-Violence is another large-scale dataset for violence detec-
tion, comprising 4754 untrimmed videos with audio signals
and weak labels that are collected from both movies and
YouTube. XD-Violence captures 6 categories of anomalies
and it is divided into a training set of 3954 videos and a test
set of 800 videos.



METHOD BACKBONE AUC(%)
SULTANI et al. [24] C3D-RGB 75.41
SULTANI et al. [24] I3D-RGB 77.92
IBL [41] C3D-RGB 78.66
GCL [40] ResNext 79.84
GCN [42] TSN-RGB 82.12
MIST [5] 13D-RGB 82.30
WU et al.[36] 13D-RGB 82.44
CLAWS [39] C3D-RGB 83.03
RTFM [28] VideoSwin-RGB 83.31
RTFM [28] I13D-RGB 84.03
Wu & Li1u [35] I3D-RGB 84.89
MSL [15] I3D-RGB 85.30
MSL [15] VideoSwin-RGB 85.62
S3R [34] I13D-RGB 85.99
MGEFN [2] VideoSwin-RGB 86.67
MGEN [2] I13D-RGB 86.98
SSRL [13] 13D-RGB 87.43
CLIP-TSA [11] ViT 87.58
SVM [24] - 50.00
SSV [23] - 58.50
BODS [33] I3D-RGB 68.26
GODS [33] 13D-RGB 70.46
GCL [40] ResNext 74.20
TUR et al. [30] ResNet 65.22
TUR et al. [31] ResNet 66.85
DYANNET [27] 13D 79.76
ZS CLIP [22 ViT 53.16
ZS IMAGEBIND (IMAGE) [6] ViT 53.65
ZS IMAGEBIND (VIDEO) [6] ViT 55.78
LLAVA-1.5[17] ViT 72.84
LAVAD ViT 80.28

Table 1. Comparison with state-of-the-art weakly-supervised ,
one-class , unsupervised and training-free methods on the
UCEF-Crime dataset. The best results among training-free methods
are highlighted in bold.

Performance Metrics. We measure the VAD performance
using the area under the curve (AUC) of the frame-level
receiver operating characteristics (ROC) as it is agnostic to
thresholding for the detection task. For the XD-Violence
dataset, we also report the average precision (AP), i.e. the
area under the frame-level precision-recall curve, following
the established evaluation protocol in [36].

Implementation Details. We sample each video every 16
frames for computational efficiency. We employ BLIP-2 [14]
as the captioning module ®. Particularly, we consider an
ensemble of BLIP-2 model variants in our Image-Text Cap-
tion Cleaning technique. Please refer to Supp. Mat. for a
detailed analysis of these variants. We use Llama-2-13b-chat
[29] as our LLM module ®;;y. We use multimodal encoders
provided by ImageBind [6]. Specifically, the temporal win-
dow is T' = 10 seconds, in line with the pre-trained video
encoder of ImageBind. We employ K = 10 in Video-Text
Score Refinement.

METHOD BACKBONE

WU et al. [36]
WU et al. [36]

AP(%) AUC(%)

C3D-RGB 67.19 -
I3D-RGB 73.20 -

MSL [15] C3D-RGB 75.53 -
WU AND LI1U[35] I13D-RGB 75.90 -
RTFM [28] I13D-RGB 77.81 -
MSL [15] 13D-RGB 78.28 -
MSL [15] VideoSwin-RGB  78.58 -
S3R[34] I13D-RGB 80.26 -
MGFN [2] I3D-RGB 79.19 -
MGFN [2] VideoSwin-RGB  80.11 -
HASAN et al. [8] AERGB - 50.32*
LU etal. [19] Dictionary - 53.56*
BODS [33] I3D-RGB - 57.32*
GODS[33] 13D-RGB - 61.56*
RAREANOM [26] I13D-RGB - 68.33*
ZS CLIP [22] ViT 17.83 38.21
7S IMAGEBIND (IMAGE) [6] ViT 27.25 58.81
ZS IMAGEBIND (VIDEO) [6] ViT 25.36 55.06
LLAVA-1.5[17] ViT 50.26 79.62
LAVAD ViT 62.01 85.36

Table 2. Comparison with state-of-the-art weakly-supervised ,
one-class , unsupervised and training-free methods on the XD-
Violence dataset. * denotes results reported in [26]. The best results
among training-free methods are highlighted in bold.

4.1. Comparison with state of the art

We compare LAVAD against state-of-the-art approaches, in-
cluding unsupervised methods [26, 27, 30, 31, 40], one-class
methods [8, 19, 23, 24, 33], and weakly-supervised meth-
ods 2,5, 11, 13, 15, 15, 24, 28, 34-36, 39-42]. In addition,
as none of the above methods specifically address VAD in a
training-free setup, we further introduce a few training-free
baselines with VLMs, i.e. CLIP [22], ImageBind [6], and
LLaVa [17].

Specifically, we introduce Zero-shot CLIP [22]
(ZS CLIP) and Zero-shot ImageBind [6] (ZS IMAGEBIND).
For both baselines, we exploit their pre-trained encoders to
compute the cosine similarities of each frame embedding
against the textual embeddings of two prompts: a standard
scene and a scene with suspicious or potentially criminal ac-
tivities. We then apply a softmax function to the cosine sim-
ilarities to obtain the anomaly score for each frame. Since
ImageBind also supports the video modality, we include
ZS IMAGEBIND (VIDEO) using the cosine similarities of
the video embeddings against the two prompts. We choose
ViT-B/32 [3] as the visual encoder for ZS-CLIP, ViT-H/14
[3] as the visual encoders for ZS-IMAGEBIND (IMAGE,
VIDEO), and both utilize CLIP’s text encoder [22]. Finally,
we introduce a baseline based on LLAVA-1.5, where we
directly query LLaVa [17] to generate an anomaly score
for each frame, using the same context prompt as in ours.
LLAVA-1.5 uses CLIP ViT-L/14 [22] as the visual encoder
and Vicuna-13B as the LLM.
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Figure 5. We showcase qualitative results obtained by LAVAD on four test videos, including two videos (top row) from UCF-Crime and
two videos from XD-Violence (bottom row). For each video, we plot the anomaly score over frames computed by our method. We display
some keyframes alongside their most aligned temporal summary (blue bounding boxes for normal frame predictions and red bounding
boxes for abnormal frame predictions), illustrating the relevance among the predicted anomaly score, visual content, and description.

Ground-truth anomalies are highlighted.

Tab. 1 presents the results of the full comparison against
the state-of-the-art methods, as well as our introduced
training-free baselines, on the UCF-Crime dataset [24]. No-
tably, our method without any training demonstrates superior
performance compared to both the one-class and unsuper-
vised baselines, achieving a higher AUC ROC, with a signif-
icant improvement of +6.08% when compared to GCL [40]
and a minor improvement of +0.52% against the current
state of the art obtained by DyAnNet [27].

Moreover, it is evident that training-free VAD is a chal-
lenging task as a naive application of VLMs to VAD, such as
7S CLIP, ZS IMAGEBIND (IMAGE) and ZS IMAGEBIND
(VIDEO), leads to poor VAD performance. VLMs are mostly
trained to attend to foreground objects, rather than actions
or the background information in an image that contributes
to the judgment of anomalies. This might be the main rea-
son for the poor generalization of VLMs on the VAD task.
The baseline LLAVA-1.5, which directly prompts for the
anomaly score for each frame, achieves a much higher VAD
performance than directly exploiting VLMs in a zero-shot
manner. Yet, its performance is still inferior to ours, where
we leverage a richer temporal scene description for anomaly
estimation, instead of a single-frame basis. The similar effect
of the temporal summary is also confirmed by our ablation
study as presented in Tab. 3. We also report the comparison
against state-of-the-art methods and our baselines evaluated
on XD-Violence in Tab. 2. Ours achieves superior perfor-
mance compared to all one-class and unsupervised methods.
In particular, LAVAD outperforms RareAnom [26], the best-
scoring unsupervised method, by a substantial margin of
+17.03% in terms of AUC ROC.

Qualitative Results. Fig. 5 shows qualitative results of
LAVAD with sample videos from UCF-Crime and XD-
Violence, where we highlight some keyframes with their
temporal summaries. In the three abnormal videos (Row 1,
Column 1, and Row 2), we can see that the temporal sum-
maries of the keyframes during the anomalies accurately
portray the visual content regarding the anomalous situa-
tions, which in turn benefits LAVAD to correctly identify the
anomalies. In the case of Normal_Videos_722 (row 1, col-
umn 2), we can see that LAVAD consistently predicts a low
anomaly score throughout the video. For more qualitative
results on the test videos, please refer to the Supp. Mat.

4.2. Ablation study

In this section, we present the ablation study conducted with
the UCF-Crime dataset. We first ablate the effectiveness
of each proposed component of LAVAD. Then, we demon-
strate the impact of task-related priors in the context prompt
P when prompting the LLM for estimating the anomaly
scores. Finally, we show the effect of i when aggregating
the K semantically closest frames in the Video-Text Score
Refinement component.

Effectiveness of each proposed component. We ablate dif-
ferent variants of our proposed method LAVAD to prove the
effectiveness of the three proposed components, including
Image-Text Caption Cleaning, LLM-based Anomaly Score,
and Video-Text Score Refinement. Tab. 3 shows the results
of all ablated variants of LAVAD. When the Image-Text Cap-
tion Cleaning component is omitted (Row 1), i.e. the LLM
only exploits the raw captions to perform temporal summary



and obtain the anomaly scores with refinement, the VAD
performance degrades by —3.8% compared to LAVAD in
terms of AUC ROC (Row 4). If we do not perform temporal
summary, and only rely on the cleaned captions with refine-
ment (Row 2), we observe a significant performance drop of
—7.58% compared to LAVAD in AUC ROC, indicating that
the temporal summary is an effective booster for LLM-based
anomaly scoring. Finally, if we only use the anomaly scores
obtained with the temporal summary on cleaned captions,
without the final aggregation of semantically similar frames
(Row 3), we can see that the AUC ROC decreases with a
significant margin of —7.49% compared to LAVAD, proving
that Video-Text Score Refinement also plays an important
role in improving the VAD performance.

Task priors in the context prompt. We investigate the im-
pact of different priors in the context prompt P~ and present
the results in Tab. 4. In particular, we experimented on two
aspects, i.e. impersonation and anomaly prior, which we
believe can potentially benefit the estimation of LLM. Im-
personation may help the LLM to process the input from the
perspective of potential end users of a VAD system, while
anomaly prior, e.g. anomalies are criminal activities, may
provide the LLM with a more relevant semantic context.
Specifically, we ablate LAVAD with various context prompts
Pc. We begin with a base context prompt: “How would
you rate the scene described on a scale from 0 to 1, with 0
representing a standard scene and 1 denoting a scene with
suspicious activities?” (Row 1). We inject only the anomaly
prior by appending “suspicious activities” with “or poten-
tially criminal activities” (Row 2). We incorporate only
impersonation by adding “If you were a law enforcement
agency,” at the beginning of the base prompt (Row 3). Fi-
nally, we integrate both priors into the base context prompt
(Row 4). As shown in Tab. 4, for videos within UCF-Crime,
the anomaly prior appears to have a negligible effect on
the LLM’s assessment for anomalies, while impersonation
improves the AUC ROC by +0.96% compared to the one
obtained with only the base context prompt. Interestingly,
incorporating both priors does not further boost the AUC
ROC. We hypothesize that a more stringent context might
limit the detection of a wider range of anomalies.

Effect of K on refining anomaly score. In this experiment,
we investigate how the VAD performance changes in relation
to the number of semantically similar temporal summaries,
i.e. K, used for refining the anomaly score of each frame.
As depicted in Fig. 6, the AUC ROC metric consistently
increases as K increases, and saturates when K approaches
9. The plot confirms the contribution of accounting seman-
tically similar frames in obtaining more reliable anomaly
scores of the video.

IMAGE-TEXT LLM-BASED VIDEO-TEXT AUC
CAPTION CLEANING ANOMALY SCORING SCORE REFINEMENT (%)
X 76.48

X 72.70

X 72.79

80.28

Table 3. Results of LAVAD variants w/o each proposed component
on the UCF-Crime Dataset.

ANOMALY PRIOR IMPERSONATION AUC (%)

X X 79.32
X 79.38

X 80.28
79.77

Table 4. Results of LAVAD on UCF-Crime with different priors in
the context prompt when querying the LLM for anomaly scores.

AUC (%)
3

2 4 6 8 10
K

Figure 6. Results of LAVAD on UCF-Crime over the number of K
semantically similar frames used for anomaly score refinement.

5. Conclusions

In this work, we introduced LAVAD, a pioneering method
to address training-free VAD. LAVAD follows a language-
driven pathway for estimating the anomaly scores, leverag-
ing off-the-shelf LLMs and VLMs. LAVAD has three main
components, where the first uses image-text similarities to
clean the noisy captions provided by a captioning model,;
the second leverages an LLM to aggregate scene dynam-
ics over time and estimate anomaly scores; and the final
component refines the latter by aggregating scores from se-
mantically close frames according to video-text similarity.
We evaluated LAVAD on both UCF-Crime and XD-Violence,
demonstrating superior performance compared to training-
based methods in the unsupervised and one-class setting,
without the need for training and additional data collection.
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Supplementary Material

In this supplementary material, we first provide the exact
form of the prompts employed in our method and then we
present additional experimental analyses. Specifically, we
first present the impact of the task-related priors in prompt-
ing the anomaly scores on XD-Violence [36]. We then
present the impact of captioning models, i.e. different vari-
ants of BLIP-2 models, for the VAD performance of our
method on both XD-Violence [36] and UCF-Crime [24]
datasets. Finally, we ablate the hyperparameters in con-
structing temporal windows to justify our design choice.
Moreover, we describe the limitations and broader social
impacts of our work, and we showcase additional qualita-
tive results that demonstrate temporal summaries and the
detection results. More qualitative results in the form of
videos can be conveniently accessed on the project website
athttps://lucazanella.github.io/lavad/.

A. Prompts

The prompts utilized in our approach serve distinct purposes.
The contextual prompt P provides priors to the LLM for
VAD. In line with the findings of our ablation studies pre-
sented in Tab. 4 and in Tab. 5, this prompt differs for UCF-
Crime [24] and XD-Violence [36]. For UCF-Crime, the
prompt is structured as: “If you were a law enforcement
agency, how would you rate the scene described on a scale
from O to 1, with 0 representing a standard scene and 1
denoting a scene with suspicious activities?”’. In contrast,
for XD-Violence, the prompt has the form: “How would
you rate the scene described on a scale from 0 to 1, with 0
representing a standard scene and 1 denoting a scene with
suspicious or potentially criminal activities?”.

The prompt P provides guidance to the LLM for the
desired output format, aimed at facilitating automated text
parsing. This prompt remains consistent across both datasets
and is defined as follows: “Please provide the response in the
form of a Python list and respond with only one number in
the provided list below [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0] without any textual explanation. It should begin
with ‘[” and end with ‘]’.”.

Lastly, the prompt P g is employed to obtain a temporal
summary .S; for each frame I,;. The prompt is formulated as
follows: “Please summarize what happened in few sentences,
based on the following temporal description of a scene. Do
not include any unnecessary details or descriptions.”.

B. Additional analyses

Task priors in the context prompt. In Tab. 5 we present the
impact of different priors in the context prompt P, i.e. im-

Table 5. Results of LAVAD on XD-Violence with different priors
in the context prompt when querying the LLM for anomaly scores.

ANOMALY PRIOR IMPERSONATION AP (%) AUC (%)
X X 60.34 84.42
X 62.01 85.36
X 58.83 84.50
60.78 85.26

personation and anomaly priors, on XD-Violence [36]. This
follows the same ablation design as presented in Tab. 4 in
the main manuscript for UCF-Crime, with the priors added
in the same way for both datasets. As shown in Tab. 5, for
videos within XD-Violence, incorporating the anomaly prior
(Row 2) improves the average precision (AP) by +1.67%
compared to using only the base context prompt (Row 1).
Conversely, introducing impersonation (Row 3) degrades the
AP by —1.51% compared to not using it (Row 1). Videos
in XD-Violence originate from various sources, including
CCTYV cameras, movies, sports, and games. The effective-
ness of the impersonation prior might be limited to CCTV
camera videos, given that the surveillance domain is more
closely associated with the concept of “law enforcement
agency” which is utilized for impersonation. Finally, com-
bining both priors (Row 4) leads to improved performance
compared to not utilizing any of them, primarily due to the
positive impact of the anomaly prior.

Impact of different BLIP-2 models. As captioners, we
consider different BLIP-2 [14] models and their ensemble
for both UCF-Crime [24] and XD-Violence [36], and we
present the results in Tables 6 and 7, respectively.

In Tab. 6, the most effective strategy for UCF-Crime
videos is employing an ensemble of all BLIP-2 models (Row
6). This involves generating captions for all frames in a
video using all BLIP-2 models and relying on the vision-
language model (VLM) to identify the semantically closest
captions for each frame. The effectiveness of the ensemble
might be attributed to the challenges posed by UCF-Crime
videos. These videos, characterized by low-resolution CCTV
footage, often lead captioning models to hallucinate scene de-
scriptions. For instance, it is common to encounter captions,
such as “a person riding a skateboard down a road” when
the image only depicts a road in the absence of any specific
event. The ensemble approach, by allowing the selection
from a larger set of candidates, increases the likelihood of
choosing more correct captions and filtering incorrect ones.

For XD-Violence, as shown in Tab. 7, utilizing the cap-
tions generated by flan-t5-xxI (Row 3) yields the best average
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Figure 7. We showcase qualitative results obtained by LAVAD on four test videos, including two videos (top row) from UCF-Crime and

two videos from XD-Violence (bottom row). For each video, we plot the anomaly score over frames computed by our method. We display
some keyframes alongside their most aligned temporal summary (blue bounding boxes for normal frame predictions and red bounding

boxes for abnormal frame predictions), illustrating the relevance among the predicted anomaly score, visual content, and description.
Ground-truth anomalies are highlighted.

Table 8. Results of LAVAD on UCF-Crime with different combi-
nations of temporal window duration (7") and number of sampled
frames per window (V).

Table 6. Results of LAVAD on UCF-Crime with different BLIP-
2 model variants in our Image-Text Caption Cleaning technique.

BLIP-2 AUC
FLAN-T5-XL FLAN-T5-XL-COCO FLAN-T5-XXL OPT-6.7B OPT-6.7B-COCO (%)
X X x X 74.19 T(s) N AUC (%)
x X X X 74.49
x X X X 7438 25 10 79.33
X X X X 75.50 5 10 78.10
X X X X 73.94
30.28 10 10 80.28
20 10 79.24
Table 7. Results of LAVAD on XD-Violence with different BLIP- 10 5 77.48
10 20 74.45

2 model variants in our Image-Text Caption Cleaning technique.

BLIP-2 AP AUC

FLAN-T5-XL FLAN-T5-XL-COCO FLAN-T5-XXL OPT-6.7B  OPT-6.7B-COCO (%) (%)
X X X X 61.09 85.16

X X X X 5741 82.78

X X X X 62.01 85.36

X X X X 56.55 82.42

X X X X 5471 8293
59.62 84.90

precision (AP). Other BLIP-2 variants for XD-Violence may
provide captions that prioritize foreground objects, poten-
tially overlooking background elements constituting anoma-
lies (e.g. a vehicle enveloped in smoke on a busy street),
yet better aligning with the VLM’s representation of the
video frames. Hence, when employing the ensemble of
BLIP-2 models (Row 6), captions that specifically highlight
elements constituting anomalies are not chosen as the seman-
tically closest captions to video frames in the cleaning step,
with a negative impact on the anomaly scoring phase.

Temporal window’s duration and number of sampled
frames. In Tab. 8, we evaluate the impact of varying the
duration of the temporal window (7") and the number of

sampled frames (IN), which is used to query the LLM for the
temporal summary S;. Specifically, the temporal window
duration 7" determines the time interval, while the number
of sampled frames N determines the number of captions.
First, we conduct experiments by adjusting the duration 7" to
2.5, 5, 10, and 20 seconds, while maintaining N = 10. The
10-second temporal window yields the highest AUC score
(Row 3). This is in line with the fact that ImageBind [6] is
trained with video clips of 10 seconds.

Subsequently, we maintain the temporal window’s dura-
tion 7" at 10 seconds and vary the number of frames from
5 to 10 and 20. Notably, using 10 frames (Row 3), i.e. 1
frame every second, is the optimal choice within this experi-
ment. Balancing the number of captions per snippet presents
a trade-off with the quality of the summary. Too many cap-
tions may overwhelm with excessive and non-diverse con-
tent, while too few captions may result in limited coverage
of the content.



C. Qualitative results

In Fig. 7, we present additional qualitative results demonstrat-
ing the effectiveness of our proposed LAVAD in detecting
anomalies within a set of UCF-Crime [24] and XD-Violence
[36] test videos. The figure showcases keyframes along
with the most semantically similar temporal summaries. For
example, in the video Shooting047 (Row 1, Column 1),
LAVAD assigns a high anomaly score when the video is
labeled abnormal. However, it also assigns a high anomaly
score during the initial and final segments, despite these parts
being labeled as normal. This discrepancy arises because
the video begins with text describing the subsequent content,
leading the LLLM to attribute a high anomaly score. In the
final part, our method correctly identifies abnormality as the
frame depicts a person on the ground who has been shot.
In the video Burglary079 (Row 1, Column 2), there is a
false abnormal instance. This occurs because the temporal
summary associated with that frame incorrectly suggests the
presence of a man stealing a car. In reality, the video depicts
a man behaving suspiciously near the car, leading to a wrong
interpretation by the captioning module. In the XD-Violence
videos (Row 2), an anomaly caused by an explosion is cor-
rectly detected (Row 2, Column 1), while a normal video
is consistently predicted as normal for more than 17,500
frames (Row 2, Column 2).

D. Limitations

We identify two main limitations of our work. Firstly, our
method fully relies on pre-trained models from VLMs and
LLMs, thus its performance greatly depends on i) how well
the captioning model describes the visual content, ii) how
reliable the LLM is when generating the anomaly scores,
and iii) how aligned the multi-modal encoders are when
processing videos from various domains. Secondly, our
anomaly scores are primarily obtained via prompting LLMs.
Although we conducted experiments investigating different
prompting strategies, a systematic understanding of LLM
prompting for VAD requires a community effort.

E. Broader Societal Impacts

While our work pioneers the technical aspect of leveraging
LLMs for detecting anomalies in videos, there exist open
ethical challenges for a broader concern. VAD systems are
mostly applied to safety-related contexts, for private use or
public interests. Prior to any deployment, it is crucial to first
investigate the behaviors of LLM-based methods, mitigating
any potential bias in LLMs and improving explainability.
Our work serves as the first technical exploration of leverag-
ing LLMs for training-free VAD, proving it as a competitive
alternative. This is a necessary step to increase the awareness
of the community on these important topics.



