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Abstract

The rapid advancement of large language models
(LLMs) has accelerated the emergence of in-context learn-
ing (ICL) as a cutting-edge approach in the natural lan-
guage processing domain. Recently, ICL has been employed
in visual understanding tasks, such as semantic segmen-
tation and image captioning, yielding promising results.
However, existing visual ICL framework can not enable
producing content across multiple modalities, which limits
their potential usage scenarios. To address this issue, we
present a new ICL framework for visual understanding with
multi-modal output enabled. First, we quantize and embed
both text and visual prompt into a unified representational
space, structured as interleaved in-context sequences. Then
a decoder-only sparse transformer architecture is employed
to perform generative modeling on them, facilitating in-
context learning. Thanks to this design, the model is capa-
ble of handling in-context vision understanding tasks with
multimodal output in a unified pipeline.Experimental re-
sults demonstrate that our model achieves competitive per-
formance compared with specialized models and previous
ICL baselines. Overall, our research takes a further step
toward unified multimodal in-context learning.

1. Introduction

With the rapid progress of large language models, in-context
learning (ICL) [5, 30, 52] has gradually become a new
paradigm in the field of natural language processing (NLP).
As introduced in GPT-3 [5], given language sequences as a
universal interface, the model can quickly adapt to differ-
ent language-centric tasks by utilizing a limited number of
prompts and examples.

Some following works [ 1, 43] present some early attempt
at applying ICL into the vision-language (VL) tasks with
the design of interleaved image and text data. For example,
Flamingo [ 1] takes the image input as a special “<image>"
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token to conduct the interleaved input prompt as text, and
injects visual information into pre-trained LLMs with gated
cross-attention dense block. It demonstrates a remarkable
capability to address various vision-language tasks. How-
ever, the language-only LLM decoder design makes it only
able to output text outputs.

More recently, some works start to apply the similar ICL
idea into the vision-only tasks via formulating the learn-
ing goal as image inpainting [4, 47, 48]. With the well-
collected multi-task vision datasets and unified grid image
prompt design, these works utilize pre-trained masked im-
age modeling models to give a perspective of what can
be general-purpose task prompts in vision. For instance,
SegGPT [48] studies the fundamental visual understand-
ing problem, segmentation task, as an in-context coloring
problem to achieve the in-context segmentation capabil-
ity. Yet, the pre-trained vision-centric inpainting framework
confines the output modality to be image only. Therefore,
a straightforward question is “How fo perform in-context
learning with multimodal output enabled for visual under-
standing in a unified framework?”

Standing on the shoulders of predecessors, in this paper,
we present the first attempt at multimodal in-context learn-
ing. The central concept aims to unify vision-language data
via modality-specific quantization and shared embedding,
then perform next-token prediction on the well-organized
interleaved sequences of in-context samples.

In detail, we first develop detailed and comprehensive
vision and language prompts, carefully designed to repre-
sent various vision understanding tasks. Then we employ
modality-specific quantizers to transform the formatted in-
context prompts and the visual input into discrete tokens
respectively. Following this, a unified embedding layer
is used to map these tokens into a shared representational
space. Once the model outputs prediction tokens with spe-
cific prompts, the modality-specific decoders automatically
decode them into the intended domains. This design ef-
fectively allows for multimodal input and output. To fa-
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Figure 1. Motivation illustration of our method. In earlier efforts, existing in-context visual understanding models were confined to
a particular output modality. For instance, SegGPT specialized in “Image — Image” applications, tailored for tasks involving image

segmentation. Similarly, Flamingo was purpose-built for “Image —

” scenarios, focusing on language-centric tasks such as image

captioning. In contrast, we take a further attempt to design a unified model capable of handling multimodal in-context visual understanding

tasks for “Image — Image / ” scenarios.

cilitate the in-context learning on unified representations,
we further combine the autoregressive transformer with the
Mixture of Experts (MoEs). The autoregressive transformer
produces a natural contextual association based on the next-
token prediction, while MoEs [14, 23] serve as a promis-
ing solution for multi-task learning by dynamically activat-
ing sub-networks without the need for task-specific mod-
ules. Following previous in-context prompts formats, we
take semantic segmentation and dense captioning as the ex-
ample image understanding tasks, and formatting semantic
category information as the clue across multiple in-context
samples. Through extensive experiments and analysis, we
demonstrate that our model can facilitate in-context learn-
ing on vision understanding tasks and enable multimodal
outputs within a unified model.

2. Related Works

In-Context Learning. As the dimensions of both model
size and corpus size escalate [5, 8, 10, 34], large language
models (LLMs) exhibit an aptitude for in-context learning
(ICL), namely, the capacity to distill knowledge from a lim-
ited array of contextual examples. GPT-3 [5], for instance,
pioneers the articulation of various natural language pro-
cessing (NLP) tasks as text completion conundrums, a strat-
egy predicated on the provision of prompts and examples.
This novel methodology considerably simplifies the integra-
tion of task knowledge into LLMs by modifying the demon-
strations and templates, a concept substantiated by various
studies [29, 49, 52].

Within the field of computer vision, the study [4] initially
advances an in-context training paradigm utilizing image
inpainting on illustrations and infographics derived from
vision-related literature, which shows competencies in fun-

damental CV tasks. Additionally, the study by Painter [47]
employs masked image modeling on continuous pixels to
conduct in-context training with self-organized supervised
datasets in seven tasks, and yields highly competitive out-
comes on them. Subsequently, SegGPT [48] is a dedicated
method trying to solve diverse and unlimited segmentation
tasks with a similar framework. Recent studies have con-
centrated on how to enhance the ICL capability in vision,
such as prompt selection [41] and the execution of nearest
neighbor retrieval utilizing a memory bank [3].

Prior works have typically been confined to specific do-
mains. In contrast, our study is conducted across both vision
and language domains, as we aspire to realize the potential
of multimodal in-context learning.

Multimodal Understanding and Generation. Multi-
modal understanding and generation represent an emerging
frontier in artificial intelligence that seeks to interpret and
synthesize information across various forms of data, such
as text, images, sounds, and even more modalities. Inspired
by the success of ChatGPT as well as GPT-4 [32, 33], re-
cent works primarily concentrate on aligning visual features
with the pre-trained LLMS for multimodal comprehension
tasks [18, 24, 26, 27, 44, 45, 53, 57]. While pre-trained
LLMs have empowered systems to follow human instruc-
tions for vision-language interactions, their application has
been confined to generating textual outputs.

Expanding the horizons of multimodal capabilities, a
burgeoning spectrum of studies [15, 21, 40, 42, 51, 54] are
pioneering innovations in both understanding and genera-
tive capacities across modalities. IMAGEBIND [15] uti-
lizes the image-paired data to connect five different modali-
ties with a single joint embedding space, demonstrating im-
pressive zero-shot capabilities across these modalities. Oth-



erwise, CoDi [42] introduces a composable generation strat-
egy by bridging alignment in the diffusion process, facilitat-
ing the synchronized generation of any combination of out-
put modalities, including language, image, video, or audio.
Furthermore, NExT-GPT [51] integrates an LLM with mul-
timodal adaptors and diverse diffusion decoders, enabling it
to perceive inputs and generate outputs in arbitrary combi-
nations of text, images, videos, and audio with understand-
ing and reasoning.

However, these models are not designed for in-context
learning, without the benefit of the multiple prompts.

Mixture of Experts models. Mixture of Experts (MoEs),
which have demonstrated remarkable success in both com-
puter vision [28, 35, 46] and natural language processing
[11, 14, 22, 36, 59] with the context of conditional compu-
tation. Conditional computation aims to increase the num-
ber of model parameters without significantly increasing
computational cost by selectively activating relevant parts
of the model based on input-dependent factors [6, 9]. [36]
first provides compelling evidence for the efficacy of MoEs
by incorporating MoE layers into LSTM models. Building
upon this, subsequent studies [14, 20, 23, 37] extend the
application of this approach to transformer architectures.

With different routing strategies, MoE models have also
been studied for multitask learning [16, 22, 58] and multi-
modal learning [31, 38] as well. Recent work VL-MoE [38]
is the first work to combine modality-specific MoEs with
generative modeling for vision-language pretraining. In
this work, we further study the potential of combining au-
toregressive transformer with MoE for vision-language in-
context learning.

3. Method

In this section, We present a multimodal in-context frame-
work that can seamlessly integrate the strengths of language
models with the specific requirements of vision-language
tasks for in-context learning. We first introduce well-
organized vision-language prompts to describe foundational
visual understanding tasks like segmentation and captioning
(Section 3.1). After conducting the input into predefined
prompts format, we quantize in-context prompts with the
input pair into discrete codes using modality-specific tok-
enizers, and then embed them into unified representations
with a general embedding network (Section 3.2). Then a
decoder-only transformer with sparse MoEs is introduced
to perform generative modeling on the interleaved unified
representations (Section 3.3). In the following paragraph,
we will elaborate on each part in detail.

3.1. Vision-Language Prompt Design

We begin by implementing unified vision-language prompts
to depict different types of vision-language tasks. We

treat k in-context samples with input and output like
?(i1,01), "+, (k+1, 0k+1)” as interleaved data, and embed
them in the discrete token space. This innovative design
provides the flexibility required for customizing vision or
vision-language tasks according to specific needs and pref-
erences.

Vision-Only Tasks. Following previous works, we conduct
all vision-only tasks as an inpainting task. However, the in-
painting is performed in token space. For every image pair
that is composed of an original image and its corresponding
task output, we first quantize them into discrete tokens uti-
lizing a pre-trained image quantizer. A special tag “[BOI]”
is inserted in front of each image’s token representation.
Then we concatenate each pair’s visual tokens obeying the
order of precedence. This structure creates a cohesive re-
lationship between the two in-context pairs, framing them
both as visual token components.

Vision-Language Tasks. For vision-language tasks, here
we take the dense captioning task as an example. The
prompts are clear and closely resemble those of natural lan-
guage processing (NLP) tasks. Similar to existing meth-
ods [1], multiple captioning samples can be treated as in-
terleaved image and text data. For each image, we quantize
them the same way as in vision-only tasks, with the spe-
cial “[BOI]” tag. For the text part, we describe the region
caption with corresponding instance category and bounding
box (bbox) like “Category: <c>. Bboxes: [x1,Yy1,T2,Y2].
Caption: <text>.” While P = {z;,y;}}, represents
points that locate the object. <text> represents the place-
holder of caption tokens. We also add a special tag “[BOT]”
at the beginning of each caption. After being tokenized by
looking up the vocabulary, we use a similar concatenation
strategy to get the in-context token representations.

At the conclusion of each segment of in-context tokens,
we incorporate an “[EOC]” tag to signify the completion of
in-context samples.

3.2. Unified Multimodal Representations.

Building upon the foundation of multimodal in-context
prompts discussed in Section 3.1, how to facilitate the
model understanding multimodal input in a unified man-
ner is a challenging problem. Revisiting previous vision-
language models [1, 43], we decide to utilize the discrete
token method as the bridge between the various input and
the model embedding space. In this section, we will demon-
strate the preparation for a general training recipe with mul-
timodal in-context inputs by unifying representations based
on modality-specific quantization.

Multimodal Quantization Stage. We leverage existing
well-known modality-specific quantizers to encode multi-
modal data into discrete tokens. As illustrated in Figure 2,
for image data, we adopt the vector quantizer used in VQ-
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Figure 2. Overview of our unified multimodal representations pipeline with two stages. During the multimodal quantization phase, visual
and linguistic inputs are encoded into discrete tokens via modality-specialized tokenizers: specifically, VQGAN’s tokenizer for visual data
and GPT-2’s tokenizer for texts. After that, in the unified embedding stage, multimodal discrete tokens are formatted as an interleaved
sequence with special tokens. Then a unified embedding layer projects the sequence into general representations.

GAN [13]. Given an image ;g € RHXWX3 the quan-
tization step is performed by searching the nearest embed-
ding in the learned, discrete codebook Z = {z} |, C
R™=, where n, is the codebook size, which can be formu-
lated as:

2g; = argmin ||E(zimg) — 2kll2- (1)
ZLEZ

where z, ; is the quantized encoding of z;,,4, and F repre-
sents for the convolution encoder. We add the visual tokens
to the text vocabulary.

For the text part, the subword Byte-Pair Encoding (BPE)
tokenizer in GPT-2 [34] is utilized. In the context of encod-
ing information, BPE tokenizer quantizes xs.,+ into tokens
24t by looking up the vocabulary. We treat the category la-
bel c as the natural language format, with two special tags
<c_st> and <c_ed> denoting the start and end of this part.
Compared with the class tokens proposed in [45], category
label in language offers the potential for generalization to
unseen classes. For the bbox information, we adopt a simi-
lar method in [7]. After normalizing the coordinates P with
3 decimal places according to the size of the image, we map
it to predefined tokens { <bin_0>,--- , <bin_-1000>}. Ad-
ditional start and end tags <b_st>, <b_ed>> are placed at
both ends of the bbox. Therefore, we can control the pre-
cision of coordinates with fewer tokens than the numerical
representation.

Unified Embedding Stage. After quantizing each modal-
ity data into discrete tokens, we take the embedding step.
Here, we treat data in both modalities equally, as all the
tokens will be mapped into a unified representation em-
bedding space by a linear layer. Then, all in-context
token embeddings will be concatenated sequentially as

“(zhiizbi)i o (ZNT 2ETY)” and fed into the model.
This design offers generality and scalability for multimodal
knowledge transfer. Thus, the model can handle interleaved

image and text inputs like Flamingo [1].

3.3. Model Architecture and Training Objective

After the unification of various modality data, we are now
going to discuss how to perform in-context learning in a
general framework. We construct our model using a GPT-2
style decoder-only transformer architecture with the sparse
MokEs for multimodal in-context learning. As shown in Fig-
ure 3, the overall framework is very simple and straightfor-
ward. With the interleaved input representations, we utilize
next-token prediction for modeling the contextual informa-
tion. The model’s predictive logits will undergo a sampling
process to convert them back into tokens, which are subse-
quently decoded by the respective tokenizer of each modal-
ity. Consequently, the model can achieve multimodal input
prompts and prediction, rather than being limited to specific
output domains owing to the pre-trained backbone.

Attribute Routing MoE. Different tasks with shared pa-
rameters may conflict with each other as described in previ-
ous works [14, 58]. To mitigate the task interference issue,
we utilize MoE layers, which allow different modalities and
tasks to use separate parameters. For details, we replace
the FFN block in each MoE decoder layer with the sparse
MoE layer with NV experts introduced in [35]. Following
Uni-Perceiver-MoE, we adapt the attribute routing strategy
for in-context tokens, and top-k gating is implemented to
decide the gating decision for the embedding of each to-
ken 2 € RP. Therefore the calculation of gating is formu-
lated as: G(z) = topy, (softmax(Wy(x))), where W, is the
learnable weights of the router, and top,,(-) represents oper-



ator that choose the largest k values. After gating, the output
of sparse MoE layer is the weighted combination of the acti-
vated experts’ computation: oy = Ef\il G(x);-FFN;(z).

Loss Function. Unlike previous vision generalists [4, 47,
48] using masked image modeling as the learning objective,
we perform generative modeling on interleaved in-context
representations like Flamingo [1], benefiting from the natu-
ral context understanding by leveraging next token predic-
tion.

The cross-entropy loss is employed on the output tokens
of each in-context pair as well as the input pair, which con-
strains the similarity between model predictions Pp..q and
ground-truth tokens Py, represented as:

k+1 . .
LOUt = Z CE( [l)red7 ;t) (2)
=1

We also utilize the auxiliary loss introduced in
GShard [23] to optimize the gating network of MoEs, and
the whole loss function can be represented as:

L= Eout + A Eaua: (3)

where ) is the weight of auxiliary loss.

4. Experiments
4.1. Datasets and Benchmarks.

Prior works in visual in-context learning predominantly
aimed to integrate concepts from NLP into conventional vi-
sual tasks. As detailed in MAE-VQGAN [4], Painter [47]
and SegGPT [48], each task involves creating a grid-
structured image. However, these approaches overlook
task-specific comprehension, merging all tasks into a singu-
lar prompt. Consequently, we propose a redefined approach
to traditional visual tasks with semantic clues, emphasizing
vision-language understanding tasks such as semantic seg-
mentation and image captioning, which are named class-
aware in-context (short for CA-ICL) segmentation and cap-
tioning respectively.

CA-ICL Segmentaion. As depicted in Figure 4, for seg-
menting instances of a particular class, each in-context sam-
ple is provided solely with the desired class segmentation
mask. We conduct the data with the entire MS-COCO
dataset, which contains 80 object classes. For each cate-
gory, a mask pool is built for in-context sampling. Finally,
we collect about 350k class masks for training and 15k class
masks for validation. Evaluation Metric: We take the con-
ventional semantic segmentation metric Mean Intersection
over Union (MIoU) for evaluation. Given that the output
is a binary mask, we also present the Mean Absolute Error
(MAE) scores.
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Figure 3. Overview of our pipeline. Here, we take the CA-ICL
captioning task as an example. Multiple in-context samples and
the input pair are first tokenized using modality-specific tokenizers
and then projected into unified embedding representations. After
undergoing interleaved concatenation, the tokens are inputted into
the model for generative modeling.

CA-ICL Captioning. For the CA-ICL captioning, we also
take the class information as the in-context clue, with each
in-context sample containing the caption for the desired cat-
egory. Here, we use the Visual Genome dataset, from which
each image has multiple annotations, including object labels
and caption annotations for each region of the image. We
selectively use categories that correspond with those in the
MS-COCO dataset, ensuring that each class has more than
100 descriptions. Finally, we collected about 460k region
descriptions for training and 2k region descriptions for the
test set. Evaluation Metric: Captioning performance is
assessed using the BLEU4, METEOR, and CIDEr metrics,
which are standard in image captioning tasks. When incor-
porating bbox information in prompts, we also present the
mean Average Precision (mAP) metric following [19]. By
filtering the prediction with predefined thresholds on IoU
and METEOR, the average of the APs obtained for all pair-
wise combinations of the two thresholds to evaluate both
localization and description accuracy.
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Figure 4. Class-aware in-context understanding task definitions.
For the sake of easy demonstration, only one in-context sample is
used here. The blue boxes [ on the left display the inputs of the
model, while the red boxes [ on the right show the corresponding
output. (In the absence of additional clarification, subsequent no-
tations convey the same meaning.)

4.2. Implementation Details.

For the image tokenizer, we adopt VQ-GAN tokenizer [13]
with a vocabulary size of 1024 and 16x downsampling ra-
tio, which is pre-trained on the Imagenet dataset. The in-
put image resolution is set to 256 x 256, leading to 256
tokens after quantization. For the text tokenizer, we employ
GPT-2 BPE tokenizer [34] with a vocabulary size of 50257.
We implement our model with GPT-small model architec-
ture while replacing the FFN in part of the decoder layers
with attribute routing MoEs introduced in [58]. Please refer
to the supplementary for detailed architecture hyperparam-
eters.

During each training iteration, the number of in-context
samples is set to 3 by default. All parameters are trained
from scratch. The weight ) is set to 0.02. For optimiza-
tion, we employ the AdamW algorithm with a base learn-
ing rate of le-4, complemented by a weight decay of 0.05.
We utilize gradient clipping at a value of 0.5 to stabilize the
training process, ensuring consistent performance through-
out. Unless otherwise specified, the training runs for 40
epochs with a batch size of 512 on § NVIDIA A6000 GPUs.

diverse sizes  large scale ‘ MIoU T MAE |

X X 3182 0.176
v X 3354 0172
X v 4287  0.133
v v 45.04  0.128

Table 1. Ablation of object size and scale in class-aware in-
context segmentation task. Regarding object size, we adopt the
MS-COCO definition, for whether to include small instances with
an object area less than 322 square units. For object scale con-
siderations, the crop region is taken into account. The highlighted
row indicates the best choice. (In the absence of additional clarifi-
cation, subsequent notations convey the same meaning.)

bbox_image bbox_text | B@4 1  CIDEr 1
X X 7.9 104.4
v X 0.0 2.7
X v 7.8 112.0
Table 2. Ablation study on the impact of bbox informa-

tion in class-aware in-context caption task. “bbox_image” and
“bbox_text” indicate that the bounding box is in image type or in
text format.

4.3. Ablation Studies

In this section, we conduct an ablation study of our method
from three perspectives: task definition, model definition,
and multi-task co-training strategy. Without additional
statements, the experiments are conducted using images in
128 resolution with 20 epochs of training.

Class-aware In-context Task Definitions. In our explo-
ration of two proposed in-context learning tasks, we rig-
orously examine the task definitions. As demonstrated in
Table 1, we investigate the object size and scale within each
in-context sample for the CA-ICL segmentation task. Our
findings indicate that including small objects with a large
object scale yields optimal results. We surmise that objects
spanning multiple scales offer more detailed insights and
salient in-context samples lead to a richer diversity of infor-
mation, which is beneficial for segmentation.

In our research on CA-ICL captioning, We explore the
correlation between in-context input images and their cor-
responding descriptions. We drew inspiration from dense
captioning and visual grounding, examining if incorporat-
ing object location information is beneficial for the model
to capture semantic cues conveyed by in-context samples.

As evidenced in Table 2, introducing an image-type out-
put leads to a notable decline in performance compared to
the baseline. To tackle this issue, we explored the method
of encoding bbox information in a textual format, as out-
lined in Section 3.1. While the results were considerably
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Figure 5. Analysis of the impact of including bbox information.
For better visualization, the ground truth bboxes are indicated by
rose boxes [, while the predicted bboxes are highlighted in green
boxes [|. With the bbox information in prompts, the model yields
more precise descriptions that are aligned with the specified region
locations.

better than the “bbox_image” approach, even outperformed
the baseline in CIDEr metric. Figure 5 demonstrates that
using prompts of the “bbox_text” type leads to more precise
predicted captions that correspond with the intended region.
This alignment significantly aids in the accurate and conve-
nient verification of the model’s performance during testing
phases. This evidence supports the model’s capability to ef-
fectively generate class-aware captions when supplied with
appropriate examples.

Model Variants Definition. We conducted experiments
using various model configurations at a higher resolution
of 256 to identify the optimal choice. The reference for
these experiments is the single task performance, with the
baseline established as task co-training using the standard
GPT-2 small architecture, referred to as “all tasks”. We re-
place the FFN in part of transformer blocks with the MoE
layer proposed in [23] and the AG_MOoE introduced in [58]
for analysis. The results presented in Table 3 reveal that
the baseline setting results in significant unbalanced per-
formance with a sharp segmentation performance decrease,
while models with MoE configurations surpass the baseline
in segmentation performance by 18.74 scores, yet there re-
mains a notable shortfall of 10.8 scores in captioning per-

CA-ICL segmentation ~ CA-ICL captioning

Model
MiIoU 1 CIDEr 1

single task 51.91 88.6

all tasks 21.74 71.3

w/ MoE 40.48 (+18.74) 66.5 (—10.8)
w/ AG_-MoE 42.02 (+20.28) 67.9 (9.4
w/ MT 33.72 (+11.98) 81.1(+3.8)
w/ AG_MoE and MT 49.91 (+28.17) 78.3 (+1.0)

Table 3. Ablation of model variants and multi-task learning strat-
egy. We present the MIoU and CIDEr metrics for CA-ICL seg-
mentation and captioning tasks, respectively. In the brackets, we
analyze gaps compared to the “all tasks” setting. We use green and
red to indicate the performance decreases and increases.
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Figure 6. Gradient comparison of CA-ICL tasks. We utilize the
normalized average gradient of each attention layer for compari-
son, while the symbol and the value represent the direction and
magnitude of the gradient respectively.

formance. The adoption of the AG_MOoE structure further
narrows this performance gap. Considering the image to-
kens dominate compared with text tokens and the divergent
gradient directions of differing task complexities (as shown
in Figure 6), the caption performance drops. Models with
shared parameters might struggle to effectively manage the
significant difference in token representations between the
two tasks, highlighting the advantages of MoEs. In the fol-
lowing section, we will address the challenges associated
with multi-task co-training.

Multi-task Co-training Strategy. In this section, we ex-
plore the impact of multi-task joint training. As demon-
strated in Table 3, employing the standard GPT-2 small ar-
chitecture for co-training results in significant performance
degradation, suggesting a considerable disparity in handling
tasks involving different data modalities. The implementa-
tion of the AG_MoE architecture results in a more balanced
performance across tasks, yet there remains a notable per-
formance gap compared to single-task scenarios.

To further enhance the performance of the model with
AG_MOoE, we adopt a multi-task learning paradigm to alle-
viate the task interference problems and, meanwhile, sta-
bilize the training of MoEs. Drawing inspiration from



#Trainable CA-ICL Segmentation

CA-ICL Captioning

Models Resolution
Params  MioU MAE | B@41 METEOR T CIDEr1T mAP T
specialist model
FPTrans [55] 480 139M 43.30 0.202 - - - -
VAT [17] 417 27TM 46.07 0.087 - - - -
DCAMA [39] 384 89M 53.06 0.059 - - - -
GRiT [50] 1024 197M - - 5.2 9.0 58.6 15.9
generalist model
SegGPT [48] 448 307" 62.83 0.092 - - - -
SegGPT* 256 307 51.12 0.116 - - - -
OpenFlamingo [2] 224 3B - - 4.6 114 61.3 -
Ours 256 309M 58.04 0.110 53 14.3 86.9 10.9

Table 4. Comparison with state-of-the-art specialist and generalist models on class-aware in-context task. We report both the MIoU and
MAE scores for comparison. * indicates that we test the SegGPT with images in 256 resolution. The previous state-of-the-art results are

underlined.

Uni-Perceiver v2 [25], we utilize their unmixed batch sam-
pling strategy and correlative optimizer. Here, the sampling
weight s, of each dataset is configured to be proportional to
the square root of the dataset’s size. For the scaling factor
wy, we uniformly assign a value of 1 to all tasks. As evi-
denced in Table 3, the integration of the AG_MOoE architec-
ture with our multi-task learning strategy results in perfor-
mance that exceeds the baseline for both tasks. This is par-
ticularly notable in the CA-ICL segmentation task, where
an impressive gain of 28.17 points is observed. This indi-
cates that the multi-task strategy effectively prevents poten-
tial task conflicts within a batch.

4.4. Comparison with State-of-the-art Methods

We experimented with class-aware in-context tasks to com-
pare with existing state-of-the-art specialist models as well
as generalists. For the task definition, we adopt the best set-
tings as discussed in ablations (Section 4.3). For the model
and training strategy, we utilize AG_MoE architecture with
the multi-task learning strategy.

For CA-ICL segmentation, we compare with general-
ist segmentation model SegGPT [48] and specialist few-
shot segmentation models like FRTrans [55], VAT [17] and
DCAMA [39]. As indicated in Table 4, our model trained
at a resolution of 256 surpasses SegGPT that evaluated at
the same resolution—an improvement of 6.92 in MIoU and
0.006 in the MAE score. However, still a gap between the
448 version of SegGPT with more training data and higher
resolution input. The performance is also notably compara-
ble to the state-of-the-art specialist DCAMA, which oper-
ates at a higher resolution of 384 as well.

In the domain of CA-ICL captioning, the generalist base-
line for evaluation is Openflamingo [2], a large vision-
language model that excels in demonstrating strong in-

context captioning ability. The CA-ICL captioning task
most analogous to it is that of dense captioning, as both
tasks necessitate the prediction of not only the caption but
also the corresponding bbox. Therefore, we compare with
the sota dense captioning model GRiT [50]. We utilize the
images in our test set to evaluate GRiT. Then allocate the
generated predictions to our ground-truth regions annota-
tions, utilizing the IoU metric of their respective bboxes
as the basis for the assignment. As shown in Table 4, our
method achieves state-of-the-art performance in traditional
image captioning metrics. In comparison to Openflamingo,
which has a parameter tenfold greater, we also achieve a
0.7-point increase in BLEU4 and a significant 25.6-point
improvement in CIDEr. However, the result still has a gap
in the mAP score compared with GRiT. We believe this is
because they utilize a foreground object extractor.

5. Conclusion

In this work, we present a unified framework for in-context
visual understanding. By leveraging multimodal quantiza-
tion and unified embedding, our model is capable of jointly
learning multimodal data in the general token embedding
space. By synergistically integrating autoregressive trans-
former with the MoEs framework, we achieve stable multi-
task co-training while simultaneously benefiting from the
balanced contributions of each task. Overall, our research
showcases the potential of in-context learning across vari-
ous modalities as well as tasks.
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